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Abstract We report on the current status of algorithm development and software
implementations for acceleration of quantum chemistry and computational
condensed matter physics simulations on graphics processing units (GPUs) as
documented in the peer-reviewed literature. We give a general overview of
programming techniques and concepts that should be considered when
porting scientific software to GPUs. This is followed by a discussion of
Hartree-Fock and density functional theory, wave function-based electron
correlation methods and quantum Monte Carlo in which we outline the
underlying problems and present the approaches which aim at exploiting
the performance of the massively parallel GPU hardware. We conclude with a
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critical assessment of the present state of the field and discuss future
directions that are likely to be taken.

Keywords: quantum chemistry; density functional theory; Hartree�Fock
theory; Młller�Plesset perturbation theory; quantum Monte Carlo; graphics
processing units; CUDA; NVIDIA; ATI; accelerator

1. INTRODUCTION

Commodity graphics processing units (GPUs) are becoming increasingly popular
to accelerate molecular and condensed matter simulations due to their low cost
and potential for high performance when compared with central processing units
(CPUs). In many instances, classical approximations are very successful for such
simulations. However, a large number of problems of contemporary nano-, bio-,
or materials science require a quantum mechanical description of the electronic
structure [1—3]. This chapter provides an overview of recent developments within
quantum chemistry and computational condensed matter physics that utilize
accelerator hardware for this purpose.

Quantum chemistry and solid-state physics codes implement relatively
complex algorithms [4]. The challenge in using GPUs lies in adapting these
algorithms to take advantage of their specialized hardware. A successful GPU
implementation requires, for example, a careful consideration of the memory
hierarchy in order not to expose memory access latency [5]. When using single-
precision GPUs, the numerical accuracy is a central issue because six to seven
significant figures are frequently insufficient to match the accuracy of the under-
lying theoretical model, that is, to achieve “chemical accuracy” of 1 kcal mol—1.

Finally, care should be taken to allow for a coevolution of the code with the
hardware. There are two general strategies for an implementation. First, a com-
plete reimplementation of existing functionality into a new software package.
The most common way, however, is to incrementally include GPU kernels for the
computationally intensive parts of existing software packages. The latter
approach has the advantage of retaining the full functionality of software
packages that in many cases have evolved over several decades.

This chapter begins with a brief introduction to the general concepts that have
to be considered in order to successfully port scientific software to GPUs. The rest
of this chapter is structured according to the different theoretical models com-
monly used in quantum chemistry, beginning with density functional theory
(DFT) in Section 3 which also covers Hartree—Fock (HF) theory. Section 4 deals
with ab initio electron correlation methods while Section 5 discusses quantum
Monte Carlo (QMC). Each of these sections contains an overview of the critical
parts of the underlying theory followed by a presentation and analysis of
approaches that have been taken to accelerate the computationally intensive
parts on GPUs. Section 6 summarizes the present state of GPU implementations
for quantum chemistry and finishes with general conclusions on trends to be
expected in the foreseeable future.
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2. SOFTWARE DEVELOPMENT FOR GRAPHICS
PROCESSING UNITS

An excellent introduction to software development for GPUs including a discus-
sion of the hardware and its historic development can be found in the book of
Kirk and Hwu [5]. In order to be able to write software which runs efficiently on
GPUs, it is necessary to have an understanding of the characteristics of the GPU
hardware architecture.

AGPU is an example of amassivelyparallel stream-processing architecturewhich
uses the single-instruction multiple data (SIMD) vector processing model. Typical
GPUs contain many arithmetic units which are arranged in groups that share fast
accessmemory andan instructionunit. The highdensity of arithmetic units, however,
comes at the expense of larger cache sizes and control units. The NVIDIA GeForce
8800 GTX GPU which was released in late 2006, for example, consists of 16 sets of
streaming multiprocessors (SMs), each of which is composed of eight scalar proces-
sors (ScaPs). Each SMoperates independently of the other SMs and at any given clock
cycle, eachScaPwithinanSMexecutes the same instructionbut fordifferentdata.Due
to this intrinsic parallelization, aGPUcanoutperforma standardCPU for taskswhich
exhibit a dense level of data parallelism. Successful approaches inGPUprogramming
therefore require exposing the data parallelism in the underlying problem.

Each SM has access to four different types of on-chip memory with high
bandwidth. In the case of the NVIDIA GeForce 8800 GTX, these are 1024 local
registers per ScaP, shared memory (cache) of 16 kilobytes (KB), read-only constant
cache of 8KB to speed up reads from the constant memory space, and read-only
texture cache of 8KB to speed up reads from the texturememory space. In addition,
a large, noncached off-chip graphics card memory is available. This memory,
however, has a high latency of approximately 500 GPU cycles. Applications on a
GPU are organized into streams and kernels. The former represent blocks of data
while the latter execute operations on the data. Before a GPU kernel is executed, the
CPUmust copy required data to the GPUmemory. Tomaximize the speedup of the
implemented kernels, the algorithm has to be adapted to the underlying hardware
architecture-dependent features like memory layout. Copy operations between
main memory and graphics card memory, for example, should be avoided because
access to the main memory has a high latency on the order of hundreds of GPU
cycles. One of the main problems when programming GPUs is the limited size of
workingmemory (registers, caches) which are available on chip. A large number of
parallel threads should therefore be run concurrently to hide the latency of the
registers and the shared and global memory and avoid pipeline stalls.

It is important to realize that many of these considerations are not only
important for GPU programming. The arrangement of data in a data-parallel
fashion, for example, is also important for parallel programming of distributed
memory architectures, which are found in most of today’s standard CPU
clusters. Thus many of the techniques employed to improve the parallel
efficiency of quantum chemistry codes are also applicable to GPUs. The
same holds for the optimization of memory access patterns. A general
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example for a portable algorithm is the fastest fourier transform in the west
(FFTW) Fourier transform library which reaches optimal performance on the
target platform by using a divide-and-conquer strategy [6].

Early use of GPUs required one to describe a problem to be solved in terms of
a graphics pipeline employing either OpenGL or DirectX graphics programming
languages. This complexity made general purpose computation on GPUs a
research topic. However, with the release of NVIDIA’s compute unified device
architecture (CUDA) [7] and ATI’s Stream [8] application programming inter-
faces (APIs), implementations of algorithms for GPUs using a relatively simple
extension of the standard C language have become possible. A detailed overview
of the hardware and CUDA and Stream APIs can be found on the NVIDIA [9]
and ATI [8] homepages, respectively. In addition, high abstraction subroutine
libraries are available that provide algorithms for commonly used problems in
quantum chemistry and solid-state physics such as Fourier transforms (CUFFT)
[10] and linear algebra (CUBLAS, MAGMA) [11,12].

The first generation of GPUs to support CUDA, such as theNVIDIAGeforce 8800
GTX, only featured 32-bit single-precision (SP) arithmetics and thus was of only
limiteduse forquantumchemistry.Majorefforts had tobemade todealwith roundoff
errors resulting from the lack of 64-bit double-precision (DP) data types. The second
generation of GPUs introduced themissing 64-bit arithmetics, albeit only at an eighth
of the SP performance. GPU cards dedicated to general purpose computing such as
theNVIDIATeslaC1060,which also supports large amounts of up to 4 gigabytes (GB)
onboardmemory,were introduced. The low speed of theDP arithmetics andmissing
features such as error-correcting code (ECC), however, still hamper widespread
acceptance of this generation of GPUs for scientific computing as compared tomulti-
socket CPUs. The third generation of GPUs (such as the NVIDIA Fermi) will solve
some of themajor problems of the earlier models. Most importantly, DP support will
be included at only half the speed of SP arithmetics. The availability of a global
address space and 64-bit support will help to address the memory requirement to
solve larger problems and support multiple GPUs in an easier andmore transparent
fashion. Access to CPU main memory will remain slow, however, because the data
transfer takes place over the peripheral component interconnect (PCI) bus.

3. KOHN�SHAM DENSITY FUNCTIONAL AND HARTREE�FOCK
THEORY

Due to its excellent balance between accuracy and computational cost, Kohn—
Sham density functional theory (KS-DFT) [13,14] is usually the method of choice
to investigate electronic ground states and their properties in chemistry and
solid-state physics [15,16]. Hartree—Fock (HF) wavefunctions, on the other
hand, are the starting point for ab initio electron correlation methods [4,15]
which are discussed in Section 4.

There are two major computational bottlenecks in KS-DFT and HF calcula-
tions [15]: evaluation of the KS (or Fock) matrix elements and solution of the self-
consistent field (SCF) equations. The latter requires diagonalization of the Fock
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matrix which eventually dominates the computational cost for very large calcula-
tions. This topic has not been extensively discussed in the GPU literature but
could potentially be tackled with alternatives to diagonalization as employed in
linear scaling approaches to electronic structure methods [17].

The computational effort for the formation of the KS (or Fock) matrix is
dominated by the evaluation of the two-electron repulsion integrals (ERIs)
which are required for the Coulomb and exact-exchange contributions and, in
the case of DFT, also the numerical quadrature of the exchange-correlation (XC)
contribution. Efforts to accelerate these steps are summarized in Table 1 and
reviewed in the remainder of this section.

3.1 Electron repulsion integrals

The ERIs which are required in quantum chemistry are given as

ð��j�lÞ ¼
ð
dr dr0

��ðrÞ��ðrÞ��ðr0Þ�lðr0Þ
jr� r0j ; ð1Þ

where �� are basis functions that are usually chosen to be atom-centered Gaus-
sian functions. In general, these basis functions are contracted, that is, linear
combinations of primitive Gaussian functions �p and the ERIs become

ð��j�lÞ ¼
X
pqrs

d�pd�qd�rdlsðpqjrsÞ: ð2Þ

Formally, OðN4Þ of these ERIs need to be evaluated, where N denotes the size of
the molecule under consideration. Although for large systems most of the inte-
grals are zero or negligible, the asymptotic scaling remains OðN2Þ and the sheer
number of ERIs that need to be calculated represents a major computational
bottleneck. Many different algorithms have been devised for the calculation of
these ERIs and their efficiency depends on the contraction length and angular

Table 1 Summary of the capabilities and performance of GPU-based KS-DFT and HF
implementations published to date

Authors lmax ERIs J�� K�� VXC
�� rE Parallela Speedupb

Yasuda [18,27] p Yes Yes No Yes No No 10
Ufimtsev and Martinez
[21,23,25]

p Yes Yes Yes No Yes Yes 100

Asadchev et al. [26] g Yes No No No No No 25
Brown et al. [30,31] f No Yesc No Yes Yes Yes 15d

a Support for parallelization across multiple GPUs.
bEstimates for one GPU as compared to one CPU.
cContribution due to Poisson density fitting via numerical quadrature.
dUsing 12 ClearSpeed xe620 accelerator cards.
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momentum quantum number of the basis functions involved [4]. CPU-based
quantum chemistry codes therefore implement several ERI algorithms and
make use of the best method for a given type of ERI.

From the ERIs, the Coulomb and exact-exchange contributions to the KS (or
Fock) matrix are obtained as

J�� ¼
X
�l

P�lð��j�lÞ; K�� ¼
X
�l

P�lð��j�lÞ; ð3Þ

where P�� are elements of the density matrix. As is common in direct SCF
methods, by combining Eqs. (1) and (3), the contributions to the KS (or Fock)
matrix can be evaluated directly such that the contracted ERIs never need to be
explicitly calculated and stored in memory.

Yasuda was the first to realize the potential of GPUs for the acceleration of ERI
calculations [18]. In his work, the major problems hindering algorithm develop-
ment on GPUs are addressed and the results for the calculation of the Coulomb
contribution to the KS matrix with s- and p-type basis functions are presented for a
CUDA implementation. Although it is not the most efficient algorithm for ERIs
over basis functions with low angular momentum quantum number, the Rys
quadrature [19] scheme was chosen. Due to its low memory requirements, this
scheme allows one to maximize the load balance of the GPU’s SMs. A new inter-
polation formula for the roots and weights of the quadrature was proposed which
is particularly suitable for SIMD processing, and an error analysis for the quad-
rature was given. A mixed-precision (MP) CPU/GPU scheme was introduced
which calculates the largest ERIs (prescreened via the Schwarz integral bound
and an adjustable threshold) in DP on the CPU and the remaining ERIs in SP on
the GPU such that the absolute error in the calculated ERIs can be controlled. This,
together with data accumulation (Coulomb matrix formation) via 48-bit multi-
precision addition (which can be implemented in software for GPUs without DP
support), leads to accurate DFT SCF energies while the errors are of the order of
10�3 au (around 1kcal mol—1) if all ERIs are calculated on the GPU. The contribu-
tions to the Coulombmatrix are directly computed from the uncontracted ERIs in a
SIMD fashion on the GPU which avoids the problem of having to transfer the large
amount of ERIs fromGPU to CPUmemory. Instead, only the density and Coulomb
matrix have to be transferred. If all ERIs are evaluated on the GPU (NVIDIA
GeForce 8800 GTX), speedups around one order of magnitude have been observed
for the formation of the Coulomb matrix for molecules as big as valinomycin (168
atoms) with a 6-31G basis set as compared to a conventional implementation
running on an Intel Pentium 4 CPU with 2.8GHz [18]. If part of the ERIs are
calculated on the CPU to reduce the error in the total energy to 10�6 au (less than
10�3 kcal mol—1), the speedup drops to around three. However, as Yasuda states,
there is room for improvement in the performance, for example, through pipelining
and also potentially by exploiting the DP functionality of current and future GPUs.

Ufimtsev andMartinez (UM) have also developed CUDA kernels for the calcu-
lation of ERIs and Fockmatrix formation involving s- and p-type basis functions on
GPUs [20,21]. They opted for the McMurchie—Davidson [22] scheme because it
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requires relatively few intermediates per integral resulting in a low memory
requirement, similar to the Rys quadrature. Three different mappings of the com-
putational work to thread blocks have been tested which result in different load
balancing and data reduction overhead and the ERI kernels have carefully been
optimized accordingly [21]. If the Fock matrix contributions are directly evaluated
from the primitive ERIs, it becomes most efficient to assign the calculation of each
primitive ERI batch (i.e., all ERIs over basis functions with magnetic quantum
numbers for the given angular momentum quantum numbers) to one thread,
independent of the contraction length of the basis functions. In order to maximize
load balancing, the integral batches are presorted into blocks of angularmomentum
classes [21] and within these blocks according to their magnitude [23]. As in
Yasuda’s work [18], the Fock matrix elements are directly computed on the GPU
but pre- and postprocessing are done on the CPU. This approach has been paralle-
lized over multiple GPUs [23].

HF SCF calculations with a 3-21G and 6-31G basis set using UM’s implementa-
tion and an NVIDIA GTX280 card can be more than 100 times faster than the
quantum chemistry program package GAMESS [24] on a single 3.0GHz Intel
Pentium D CPU [25]. For small- and medium-sized molecules, most of the time is
spent in the Fock matrix formation on the GPU. However, for large molecules such
as olestra (453 atoms, 2131 basis functions), the linear algebra (LA) required for the
solution of the SCF equations starts to become a bottleneck, requiring as much as
50% of the Fock matrix computation time (LA performed on the GPU using
CUBLAS). A parallel efficiency of over 60%was achieved on threeNVIDIAGeForce
8800 GTX cards as compared to the use of only one graphics accelerator. Two points
should be mentioned here. First, the limitation to s- and p-type functions results in
small integral blocks that can be treated entirely in shared memory and registers
which means that the ratio of computation to memory access is high. This situation
will change for basis functions with higher angular momentum quantum numbers.
Furthermore, the Rys quadrature [19] which was used by GAMESS in these com-
parisons is a legacy Fortran implementation that underperforms on modern CPUs
[26]. ERI algorithms which are more efficient on CPUs do exist and less favorable
GPU speedups should be observed for comparisons against implementations of
these algorithms which are optimized for performance on modern CPUs.

The error in the SCF energies obtained with UM’s code due to the use of SP
arithmetics quickly exceeds 10�3 au (chemical accuracy, less than 1 kcal mol—1)
for larger molecules [23]. However, ERI evaluation in SP and data accumulation
in DP, which can be performed on newer GPUs with negligible additional
computational cost, improve the accuracy to this level in all investigated cases.
In addition, error compensation in relative energies was observed, presumably
due to cancellation of contributions of large ERIs. For larger molecules, however,
computation of the larger ERIs in DP will be required, as has been extensively
discussed before by Yasuda [18].

UM have also implemented the calculation of the Coulomb and exact-
exchange contributions to the analytical HF energy gradients with s- and
p-type basis functions on GPUs [25]. Using the 3-21G basis set, a speedup
between 6 for small molecules and over 100 for larger molecules (olestra) has
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been obtained running in parallel on a system equipped with two NVIDIA
GTX295 cards (each of which has two GPUs) and an Intel Core2 quad-core
2.66GHz CPU. Reference was again made to GAMESS, running in parallel on
all four CPU cores. Using the mixed SP/DP approach discussed above, the
root mean squared error in the forces is distributed around 10�5 au, which is
close to typical convergence thresholds for geometry optimizations. Geometry
optimization of a helical hepta-alanine was shown to lead to an optimized
structure in good agreement with GAMESS results with an error in the final
energy as low as 0.5 kcal mol—1. Good energy conservation was shown for an HF
Born—Oppenheimer molecular dynamics simulation of an H3O+(H2O)30 cluster
with the 6-31G basis set in the microcanonical ensemble using the velocity Verlet
algorithm with a time step of 0.5 fs. An energy drift of 0.022 kcal mol—1 ps—1 was
observed over a simulation time of 20 ps.

Recently, Asadchev et al. presented algorithms and a CUDA implementation
for the calculation of uncontracted ERIs including up to g-type functions [26].
The Rys quadrature [19] was chosen which, in addition to its low memory
footprint, is efficient for integrals with higher order angular momentum. The
major problem is that, unlike numerical LA kernels, the quadrature has very
complex memory access patterns which span a large data set and depend on the
particular ERI class being evaluated. As an example, an ðffjffÞ ERI shell block
requires 5376 floating-point numbers for intermediate quantities which are
reused multiple times and 104 floating-point numbers for the final ERIs [26].
With DP this corresponds to 123,008 bytes, which is much larger than cache sizes
available on GPUs. Therefore, these intermediates must be stored and loaded
from the device memory as required and it becomes mandatory to arrange the
parallel calculation of the ERIs in such a way that these memory loads are
minimized. For this purpose, integrals in a shell block are reordered such
that intermediates can be reused as often as possible. Another problem is the
large amount of code required to cover all possible cases of integral types in
an efficient manner. The authors therefore adopted a template-based approach
in which all cases can be generated from a single template in an automated
fashion.

The performance of these GPU ERI kernels was tested on NVIDIA GeForce
GTX 275 and NVIDIA Tesla T10 cards and compared to the performance of the
ERI evaluation with the Rys quadrature as implemented in GAMESS (which, as
noted above, underperforms on modern CPUs) [26]. While the CPU code
achieves around 1 GFLOPS (giga floating point operations per second), the
GPUs achieve around 25 GFLOPS in DP and 50 GFLOPS in SP, which is approxi-
mately 30% of the theoretically possible DP peak performance. The difference
between performance in SP and DP is approximately a factor of 2 which shows
that the computations are memory bound rather than compute bound. No tim-
ings are given for the data transfer between GPU memory and main memory
apart from stating that it takes several times longer than the actual execution time
of the ERI kernels. It is clear that, in order to retain the speed advantage of the ERI
evaluation on the GPU, processing of the ERIs (e.g., Fock matrix formation) must
be implemented on the GPU device, as well.
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3.2 Numerical exchange-correlation quadrature

In the generalized gradient approximation (GGA) toDFT, the XC potential depends
on the electron density � and its gradientr� and is a complicated function in three-
dimensional space. This makes an analytical solution of the XC integrals impossible
and numerical quadrature is used to compute the XC matrix elements,

VXCðGGAÞ
�� ¼

ð
dr ��ðrÞ�GGA

XC ðrÞ��ðrÞ»
X
k

wk��ðrkÞ�GGA
XC ðrkÞ��ðrkÞ; ð4Þ

where rk are the quadrature points and wk the corresponding weights.
The numerical XC quadrature is perfectly suited for parallelization and

Yasuda was the first to exploit GPUs for this purpose [27]. He adopted a
strategy in which the computationally less demanding steps in the quadra-
ture (grid generation, evaluation of �GGA

XC on the grid points) are done in DP
on the CPU while the expensive steps are done on the GPU. These are the
evaluation of � and r� on the grid points and the summation of Eq. (4)
which can be formulated as matrix-vector multiplications and dot products.
Both steps are organized in batches of grid points and nonnegligible basis
functions that are small enough to be kept entirely in shared memory.
Although in this way some of the basis function values on the grid points
must be recalculated, this is more than compensated for by the low latency of
the shared memory.

In order to deal with roundoff errors due to the use of SP floating-point
numbers on the GPU, Yasuda introduced a scheme in which the XC potential is
approximated with a model potential �model

XC which is chosen such that its matrix
elements can be calculated analytically. This is done in DP on the CPU while the
GPU is used for calculating the correction, that is, for the numerical quadrature of
the matrix elements of DvXC ¼ �GGA

XC � �model
XC . Without the model potential, errors

in the total energy of valinomycin with a 3-21G or 6-31G basis set and the PW91
[28] XC functional are close to 10�4 au. With the model potential approach, the
error is reduced to 10�5 au which is sufficient for most purposes. A speedup of
approximately 40 is observed with an NVIDIA GeForce 8800 GTX graphics card
as compared to a conventional implementation running on an Intel Pentium 4
CPU with 2.8GHz. This translates into a speedup of around five to ten as
compared to more modern CPUs.

3.3 Density-fitted Poisson method

Brown et al. have presented a different heterogeneous approach to accelerate DFT,
combining ClearSpeed accelerator cards [29] in parallel with a host CPU [30,31].
The ClearSpeed accelerator hardware is a compute-oriented stream architecture
with raw performance comparable to that of modern GPUs while offering support
for DP. Just as for GPUs, an efficient use of this hardware requires fine-grained
parallelization with a large number of lightweight threads and any algorithm
developed for these accelerators will map well onto GPUs. By using the Poisson
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density fitting method, all bottlenecks of a DFT calculation could be shifted into
finely parallelizable numerical quadrature. Density fitting [32,33], also called reso-
lution-of-identity (RI) [34] Coulomb method, is used to avoid the need to calculate
the four-index ERIs of Eq. (1). Instead, the Coulomb contributions to the KS matrix
are obtained from three-center ERIs ð��j�Þ, where ’� are auxiliary density fitting
basis functions. As a result, the formal scaling of this step becomes OðN3Þ and the
prefactor is reduced. The auxiliary basis set can be chosen to consist of a few atom-
centered Gaussian functions augmented with Poisson functions (obtained by
applying the Poisson operator p̂ ¼ �ð4	Þ �1r2 to atom-centered Gaussian func-
tions) whereby the majority of the three-index ERIs is replaced with short-ranged

three-index overlap integrals ð��; �Þ ¼
ð
dr ��ðrÞ��ðrÞ’�ðrÞ. This leads to a further

reduction of the prefactor. Furthermore, these overlap integrals can be calculated
by numerical quadrature. However, to maintain numerical stability in the SCF
procedure, a higher accuracy than provided by default XC quadrature grids is
required, thus increasing the number of grid points.

The implementation, which is not restricted to basis functions with low
angular momentum quantum numbers, passes only information about the
numerical quadrature grid, the basis functions, the KS matrix, and the density
matrix between the accelerator cards and the host system. The numerical
quadrature of the XC contribution and the Coulomb contribution due to the
integrals ð��; �Þ is done on the accelerator cards in batches of grid points such
that all computations can be done within the cache memory of the accelerator
cards. All other parts of the DFT calculation are performed on the host CPU.
Compared to an implementation with analytical evaluation of the integrals
ð��; �Þ running on one core of a dual core AMD Opteron 2218 CPU with
2.6GHz, a speedup between 7 and 15 was observed with 12 ClearSpeed xe620
cards for SCF single-point [30] and gradient [31] calculations. The calculations
were run for molecules of the size between chorismate (24 atoms) and an
alanine helix consisting of 12 monomers (123 atoms) with 6-31G� and cc-
pVTZ and corresponding density fitting basis sets. There is further room for
improvement, for example, by implementing prescreening which is missing so
far. However, work done on the host is already becoming a bottleneck and
needs to be addressed. The diagonalization, for example, takes approximately
30% of the total runtime.

3.4 Density functional theory with Daubechies wavelets

Another effort in the physics community should be mentioned here. The BigDFT
software [35] is based on Daubechies wavelets instead of Gaussian basis func-
tions and offers support within the CUDA programming framework. It was
shown to achieve a high parallel efficiency of 90% on parallel computers in
which the cross-sectional bandwidth scales well with the number of processors.
It uses a parallelized hybrid CPU/GPU programming model and compared to
the full CPU implementation, a constant speedup of up to six was achieved with
the GPU-enabled version [35].
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4. AB INITIO ELECTRON CORRELATION METHODS

The quantum chemist’s traditional way to approximate solutions of the electronic
Schrödinger equation is so-called ab initio, wave function-based electron correlation
methods. These methods improve upon the HF mean-field approximation by add-
ing many-body corrections in a systematic way [15]. As of the time of this writing,
efforts to accelerate ab initio calculations with GPUs are scarce. However, it is
expected that this will change in the near future because these methods are of
critical importancewhenever higher accuracy is required thanwhat can be achieved
by DFTor for types of interactions and properties for which DFT breaks down.

4.1 Resolution-of-identity second-order Młller�Plesset
perturbation theory

Second-order Møller—Plesset perturbation theory (MP2) is the computationally
least expensive and most popular ab initio electron correlation method [4,15].
Except for transition metal compounds, MP2 equilibrium geometries are of
comparable accuracy to DFT. However, MP2 captures long-range correlation
effects (like dispersion) which are lacking in present-day density functionals.
The computational cost of MP2 calculations is dominated by the integral trans-
formation from the atomic orbital (AO) to the molecular orbital (MO) basis which
scales as OðN5Þ with the system size. This four-index transformation can be
avoided by introduction of the RI integral approximation which requires just
the transformation of three-index quantities and reduces the prefactor without
significant loss in accuracy [36,37]. This makes RI-MP2 the most efficient alter-
native for small- to medium-sized molecular systems for which DFT fails.

Aspuru-Guzik and coworkers have worked on accelerating RI-MP2 calculations
[38,39]. They exploited the fact that the stepwhich dominates the computational cost
of anRI-MP2 calculation essentially consists ofmatrixmultiplications to generate the
approximate MO integrals from the half-transformed three-index integrals Bia ;P ;

ðiajjbÞ»
X
P

Bia ;PBjb ;P: ð5Þ

Here, i, j (a, b) label occupied (virtual) MOs and P labels auxiliary basis functions.
CPU implementations proceed by multiplying a matrix of size Nvirt �Naux (num-
ber of virtual orbitals � number of auxiliary basis functions) against its transpose
for each pair ij of occupied orbitals.

To take full benefit of GPUs for these matrix multiplications, the matrices have
to be larger than a given threshold to minimize the impact of the bus latency
when transferring the matrices from the CPU to the GPU memory. Depending on
the system size (number of atoms, size of basis sets employed), this is achieved by
treating several pairs ij of occupied orbitals together [38].

For the multiplication of general matrices whose size is too large to be held in
the onboard memory of the GPU, a library has been developed [39,40]. As
established for standard parallel matrix multiplications, this library uses a
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two-dimensional decomposition. Partial matrix multiplications of these blocks
are performed on the GPU with CUBLAS routines and the results are accumu-
lated on the CPU. To improve the numerical accuracy, a heterogeneous comput-
ing model is employed in which numerically large contributions to the final
result are computed and accumulated on a DP device (in general the CPU) and
the remaining small contributions are efficiently treated by the SP GPU device. It
was shown that errors can be reduced by an order of magnitude in exchange for a
moderate performance decrease with this MP approach.

Compared to the standard CPU implementation, speedups of 13.8, 10.1, and 7.8
were obtained on an NVIDIATesla C1060 GPU equipped with 4GB of memory for
the 168-atommolecule valinomycin in SP,MP, and DP, respectively. The correspond-
ing correlation energy error is —10.0 kcal mol—1, —1.2 kcal mol—1, and essentially zero,
respectively [39]. While the largest speedup can be obtained by performing the
matrix multiplications entirely in SP, the resulting error is larger than acceptable for
chemical accuracy. It is therefore inevitable to put upwith some performance penalty
for the sake of accuracy. It was shown that the ERI evaluation becomes computa-
tionally as expensive as the integral transformation [38]. We therefore anticipate a
combination with the approaches discussed in Section 3 for the ERI evaluation.

5. QUANTUM MONTE CARLO

Quantum Monte Carlo (QMC) [41] is one of the most accurate methods for
solving the time-independent Schrödinger equation. As opposed to variational
ab initio approaches, QMC is based on a stochastic evaluation of the underlying
integrals. The method is easily parallelizable and scales as OðN3Þ, however, with
a very large prefactor.

Anderson et al. have shown [42] how to accelerate QMC calculations by
executing CUDA kernels that are explicitly optimized for cache usage and
instruction-level parallelism for the computationally intensive parts on a GPU.
These are the basis function evaluation on grid points and, similar to the numer-
ical XC quadrature and RI-MP2, matrix multiplications. The Kahan Summation
Formula to improve the accuracy of GPU matrix multiplications was explored
which was necessary because of the lack of fully compliant IEEE floating-point
implementations on GPUs in 2007. For small molecules with 8—28 atoms (32—152
electrons and 80—516 basis functions), approximately fivefold speedup was
obtained using an NVIDIA GeForce 7800 GTX graphics card as compared to an
optimized implementation running on an Intel Pentium 4 CPU with 3GHz.

Meredith et al. have used an implementation of the quantum cluster approx-
imation on SP GPUs to study the effect of disorder on the critical temperature for
superconductivity in cuprateswith a two-dimensionalHubbardmodel on a regular
lattice [43]. Trivial modifications to the code base were made, performing matrix
multiplications on the GPU using the CUBLAS library. Attempts to increase the
performance by circumventing the data transfer bottleneck and implementing the
remaining data manipulations on the GPU instead of the CPU resulted in a perfor-
mance loss for all but the largest problem size that was investigated. The simple
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reason is that smart algorithms that can be implemented efficiently on CPUs do not
map well onto GPU architectures or, in other words, the GPU has to do more work
to achieve the same result. For the largest problem size studied, a fivefold speedup
was observed running on a cluster with 32 AMD Opteron 2.6GHz CPUs and 32
NVIDIA 8800 GTX graphics cards as compared to using only the CPUs in parallel.
Sufficient accuracy for scientifically meaningful results within the employed model
was proven by comparison to DP results obtained on a CPU.

6. CONCLUDING REMARKS

Quantum chemistry software that exploits the capabilities of modern GPUs has
only recently started to emerge. Significant parts of these initial efforts have
been devoted to minimize errors caused by the lack of DP support on older
GPUs. The advent of next-generation GPUs that support DP arithmetics at a
peak performance of only a factor of 2 less than that of SP will make these
special approaches obsolete. At the same time, future developments will be
greatly facilitated.

From the literature, one can observe that in order to achieve good results in
programming with GPUs it is often necessary to write GPU-only versions of the
code. One typically has to abandon many of the smart optimizations that have
been developed over the years for CPUs and expensive copy operations from the
CPU to the GPU memory have to be minimized.

With careful work, it is possible to achieve speedups which should allow
researchers to perform calculations that otherwise would require large and
expensive CPU clusters. However, the nature of GPU programming is such that
significant effort is still required to make effective use of GPUs. These complex-
ities are the reason that the quantum chemistry software that is available for
GPUs at the time of this writing is still in its infancy and not yet ready for general
use. GPU implementations that are capable of full HF and DFT calculations, for
example, are still restricted to s- and p-type basis functions. HF calculations
are not of much practical use by themselves but only as starting point for
correlated ab initio methods which require basis functions with high angular
momentum quantum numbers. Similarly, meaningful DFT calculations have to
use polarization functions which means that even for simple organic molecules
or biomolecules without metal atoms at least d-type functions are required.
While GPU-based ERI implementations for high angular momentum basis func-
tions have been developed, these still have to be incorporated into software
capable of performing ab initio or DFT calculations.

Up to now only energies and gradients have been considered which allows
for explorations of potential energy surfaces. However, a variety of other quan-
tum chemistry applications would also benefit from the computational power
that GPUs provide. Of high interest for the researcher are static and dynamic
molecular response properties. Frequently, these require a higher computational
effort than energy and gradient evaluations. We therefore expect to see develop-
ments in this area soon.
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We are looking forward to exciting new developments of quantum chemistry
software for GPUs accompanied by ground-breaking applications in the near
future.
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