
CHAPTER 1
Advancements in Molecular Dynamics
Simulations of Biomolecules on
Graphical Processing Units

Dong Xu1,2, Mark J. Williamson1, and Ross C. Walker1

Contents 1. Introduction 4
2. An Overview of GPU Programming 6

2.1 GPU/CPU hardware differences 6
2.2 The emergence of GPU programming languages 7
2.3 GPU programming considerations 8

3. GPU-Based Implementations of Classical Molecular Dynamics 9
3.1 Early GPU-based MD code development 9
3.2 Production GPU-based MD codes 11

4. Performance and Accuracy 13
4.1 Performance and scaling 13
4.2 Validation 14

5. Applications 15
5.1 Protein folding 15

6. Conclusions and Future Directions 16
Acknowledgments 17
References 17

Abstract Over the past few years competition within the computer game market
coupled with the emergence of application programming interfaces to
support general purpose computation on graphics processing units (GPUs)
has led to an explosion in the use of GPUs for acceleration of scientific
applications. Here we explore the use of GPUs within the context of
condensed phase molecular dynamics (MD) simulations. We discuss the
algorithmic differences that the GPU architecture imposes on MD codes,
an overview of the challenges involved in using GPUs for MD, followed by a

1 San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
2National Biomedical Computation Resource, University of California San Diego, La Jolla, CA, USA

Annual Reports in Computational Chemistry, Volume 6 � 2010 Elsevier B.V.
ISSN: 1574-1400, DOI 10.1016/S1574-1400(10)06001-9 All rights reserved.

3

critical survey of contemporary MD simulation packages that are attempting
to utilize GPUs. Finally we discuss the possible outlook for this field.

Keywords: GPU; CUDA; stream; NVIDIA; ATI; molecular dynamics;
accelerator; OpenMM; ACEMD; NAMD; AMBER

1. INTRODUCTION

Since the first molecular dynamics (MD) simulation of an enzyme was described
by McCammon et al. [1]. MD simulations have evolved to become an important
tool in understanding the behavior of biomolecules. Since that first 10 ps long
simulation of merely 500 atoms in 1977, the field has grown to where small
enzymes can be routinely simulated on the microsecond timescale [2—4]. Simula-
tions containing millions of atoms are now also considered routine [5,6]. Such
simulations are numerically intensive requiring access to large-scale supercom-
puters or well-designed clusters with expensive interconnects that are beyond
the reach of many research groups.

Many attempts have been made over the years to accelerate classical
MD simulation of condensed-phase biological systems by exploiting alternative
hardware technologies. Some notable examples include ATOMS by AT&T Bell
Laboratories [7], FASTRUN designed by Columbia University in 1984 and con-
structed by Brookhaven National Laboratory in 1989 [8], the MDGRAPE system
by RIKEN [9] which used custom hardware—accelerated lookup tables to accel-
erate the direct space nonbond calculations, Clearspeed Inc. which developed an
implicit solvent version of the AMBER PMEMD engine [10,11] that ran on their
custom designed Advance X620 and e620 acceleration cards [12], and most
recently DE Shaw Research LLC who developed their own specialized architec-
ture for classical MD simulations code-named Anton [13].

All of these approaches have, however, failed to make an impact on main-
stream research because of their excessive cost. Table 1 provides estimates of the
original acquisition or development costs of several accelerator technologies.
These costs have posed a significant barrier to widespread development within
the academic research community. Additionally these technologies do not form

Table 1 Example cost estimates for a range of hardware MD acceleration projects

Accelerator
technology

Manufacturer Estimated cost
per node

CX600 ClearSpeed ~$10,000
MDGRAPE-3 Riken ~$9,000,000a

ATOMS AT&T Bell Laboratories ~$186,000 (1990)
FASTRUN Columbia University and Brookhaven

National Laboratory
~$17,000 (1989)

GPU NVIDIA/ATI $200—800

aTotal development cost: $15 million [14].

4 Ross C. Walker et al.

part of what would be considered a standard workstation specification. This
makes it difficult to experiment with such technologies leading to a lack of
sustained development or innovation and ultimately their failure to mature
into ubiquitous community-maintained research tools.

Graphics processing units (GPUs), on the other hand, have been an integral part
of personal computers for decades. Ever since 3DFX first introduced the Voodoo
graphics chip in 1996, their development has been strongly influenced by the
entertainment industry in order to meet the demands for ever increasing realism
in computer games. This has resulted in significant industrial investment in the
stable, long-termdevelopment ofGPU technology.Additionally the strong demand
from the consumer electronics industry has resulted in GPUs becoming cheap and
ubiquitous. This, combinedwith substantial year over year increases in the comput-
ing power of GPUs, means they have the potential, when utilized efficiently, to
significantly outperform CPUs (Figure 1). This makes them attractive hardware
targets for acceleration of many scientific applications including MD simulations.
The fact that high-end GPUs can be considered standard equipment in scientific
workstations means that they already exist in many research labs and can be
purchased easily with new equipment. This makes them readily available to
researchers and thus tempting instruments for computational experimentations.

The nature of GPU hardware, however, has made their use in general purpose
computing challenging to all but those with extensive three-dimensional (3D)
graphics programming experience. However, as discussed in Section 2 the devel-
opment of application programming interfaces (APIs) targeted at general pur-
pose scientific computing has reduced this complexity to the point where GPUs
are beginning to be accepted as serious tools for the economically efficient
acceleration of an extensive range of scientific problems.

In this chapter, we provide a brief overview of GPU hardware and programming
techniques and then review the progress that has beenmade in usingGPUhardware
to accelerate classical MD simulations of condensed-phase biological systems; we
review some of the challenges and limitations that have faced those trying to

1000 120

100

80

M
em

or
y

ba
nd

w
id

th
 G

B
/s

60

40

20

0

NVIDIA GPU

INTEL CPU
NVIDIA GPU
INTEL CPU

(a) (b)

750

500

250

0

Ja
n-

03

Ju
n-

03

Nov
-0

3

Apr
-0

4

Sep
-0

4

Feb
-0

5

Ju
l-0

5

Dec
-0

5

M
ay

-0
6

Oct-
06

M
ar

-0
7

Aug
-0

7

Ja
n-

08

Ju
n-

08

Ja
n-

03

Ju
n-

03

Nov
-0

3

Apr
-0

4

Sep
-0

4

Feb
-0

5

Ju
l-0

5

Dec
-0

5

M
ay

-0
6

Oct-
06

M
ar

-0
7

Aug
-0

7

Ja
n-

08

Ju
n-

08

NV30
NV35

NV40
G70

G71

Northwood Prescott EE Woodcrest
HarpertownNV30

NV40

G71

G80
G80 Ultra

GT200

GT200 = GeForce GTX 280
G92 = GeForce 9800 GTX
G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX
NV40 = GeForce 6800 Ultra

Nv35 = GeForce FX 5950 Ultra
NV30 = GeForce FX 5800

3.0 GHz
Core 2 Duo

3.2 GHz
Hapertown

G80
G80 Ultra

G92

GT200

P
ea

k
G

F
lo

p/
s

Figure 1 Peak floating-point operations per second (a) and memory bandwidth (b) for Intel CPUs
and NVIDIA GPUs. Reproduced from [15].

Advancements in MD Simulations of Biomolecules on GPUs 5

implementMD algorithms on GPUs, consider performance numbers and validation
techniques, and then highlight some recent applications of GPU-accelerated MD.
Finally, we comment on the limitations of current GPU MD implementations and
what the future may hold for acceleration of MD simulations on GPU hardware.

2. AN OVERVIEW OF GPU PROGRAMMING

2.1 GPU/CPU hardware differences

In order to comprehend where the performance benefits lie and understand the
complexity facing programmers wishing to utilize GPUs, it is necessary to compare
the underlying nature, and design philosophies, of the GPU with that of the CPU.

Conventional CPUs found in the majority of modern computers, such as those
manufactured by Intel and advanced micro devices (AMD), are designed for
sequential code execution as per the Von Neumann architecture [16]. While
running a program, the CPU fetches instructions and associated data from the
computer’s random access memory (RAM), decodes it, executes it, and then
writes the result back to the RAM. Within the realm of Flynn’s taxonomy [17],
this would be classified as single instruction, single data (SISD).

Physically, a CPU generally comprises of the following units (Figure 2). The
control unit receives the instruction/data pair from RAM during the decoding
phase and disseminates out the instruction to give to the arithmetic logic unit
(ALU) which is the circuitry that carries out the logical operations on the data.
Finally, there are cache units which provide local and fast temporary data storage
for the CPU. Historically, performance improvements in sequential execution
have been obtained by increasing CPU clock speeds and the introduction of more
complex ALUs that perform increasingly composite operations in fewer clock
cycles. Additionally, pipelining, which is executing instructions out of order or in
parallel while maintaining the overall appearance of sequential execution, has
also improved performance (but not calculation speed) by increasing the number
of instructions a CPU can execute in a unit amount of time; and larger on chip
cache memory is often used to hide latency.

In contrast to the CPU’s generality, GPUs (Figure 2) have been designed to
facilitate the display of 3D graphics by performing large numbers of floating-

(a) CPU (b) GPU

Control

Cache

ALU

ALU ALU

ALU
ALU

ALUALU

ALUControl

Cache

DRAM DRAM

Figure 2 Abstraction contrasting CPU and GPU design. Adapted from [18].

6 Ross C. Walker et al.

point operations per video frame: they are essentially specialized numeric com-
puting engines. The dominant strategy adopted by the graphics industry to meet
this requirement has been to maximize the throughput of a massive number of
parallel threads which can all access the RAM on the GPU board. Herein lies the
key difference with CPUs: the same operation can be carried out on different
parts of the input data within the GPU’s memory by an army of individual
threads concurrently. Within Flynn’s taxonomy, this falls into the single instruc-
tion, multiple data (SIMD) category.

A GPU has a hierarchical structure composed of multiple streaming multipro-
cessors (SMs) which in turn consist of sub units of streaming processors. Memory is
also hierarchical, maintaining an approximately constant size to speed ratio; all SMs
share the same device global memory which is large, but relatively slow. Smaller,
lower latency, on-chip memory which is local to each SM and available to all
streaming processors within that SM is provided and even faster register-like
memory is present on each streaming processor. A read-only cache of the device
global memory is available to each SM in the form of a texture cache. Physically,
GPUs have a much larger number of ALUs than a CPU, but the ALUs are not as
complex as the ones found in a CPU. The GPU’s clock speed is normally about half
that of a contemporaryCPU’s; however, GPUs typically have an order ofmagnitude
larger memory bandwidth to their onboard device global memory.

2.2 The emergence of GPU programming languages

The spectrum of GPU accessibility for scientific use has two extremes. Prior to the
development of current general purpose GPU programming models by the major
GPU hardware manufacturers, heroic attempts [19] had been made by pioneers
in the field in hijacking graphic specific APIs, such as OpenGL, and using them as
vehicles for carrying out general purpose calculations. However, development
was time consuming and essentially hardware specific. At the other extreme, a
compiler should exist which can compile existing scientific code for execution on
GPUs without the scientist having to consider the underlying nature of the
hardware one is calculating on.

At present, we are somewhere in-between these points; the barrier to utilizing
GPU hardware for general purpose computation has been reduced by the intro-
duction of general purpose GPU programming models such as NVIDIA’s Com-
pute Unified Device Architecture (CUDA) [15] and AMD’s Stream [20]. However,
algorithmic paradigm shifts are often required in existing codes to maximize
such performance offered by the massively parallel GPU hardware.

The CUDA programming model fromNVIDIA appears to be the most mature
and widespread in scientific applications at this moment in time, hence the
discussion here will focus on specifics pertaining to it. CUDA, a C-like program-
ming language, enables code to run concurrently on the CPU and GPU, with the
assumption that the numerically intensive parts of a program will be executed on
the GPU and remaining sections, which are perhaps not suited to the GPU,
remain executing on the CPU. A mechanism is provided for the two parts of
the running code to communicate with each other.

Advancements in MD Simulations of Biomolecules on GPUs 7

CUDA abstracts the hierarchical GPU hardware structure outlined, into a
programming framework, requiring the coder to write in an intrinsically parallel
fashion. The small numerically intensive subroutines of code that run specifically
on the GPU are termed kernels. These are executed in blocks where each block
contains multiple instances of the kernel, termed threads.

This partitioning enables the following (CUDA runtime mediated) physical
mapping onto the GPU hardware: each block is run on an individual MP with
the number of threads determined by the number of physical SPs within theMP. As
a result, only threads within the same block can synchronize with each other. This
block-based parallelism and the need to keep all SM units busy in order to achieve
efficient performance lead to a number of nontrivial programming considerations.

2.3 GPU programming considerations

A key strategy in improving wall clock time to scientific problem solution is
recasting an algorithm in a way that makes it computationally palatable for the
nature of the hardware that it is being executed on; an algorithm that performs
poorly on a CPU may perform many orders of magnitude better on a GPU and
vice versa. However, when dealing with scientific problems, it is essential that
alternative approaches to solving the underlying physics yield the same solu-
tion, albeit via different paths. It is very tempting given the architectural differ-
ences of GPU hardware to change the nature of the problem being solved
without a thorough understanding of the implications this has on the scientific
results.

General strategies when developing efficient algorithms on GPUs include the
following:

1. Ensure that host-to-device communication during a calculation is kept to a
minimum. For example, one should ensure that as much of the calculation
remains on the GPU as possible. Ferrying data back and forth between the
GPU and the host machine is costly due to the latency of the PCIe bus, hence if
one is storing atomic coordinates on the host’s memory, then the GPU is going to
be idle while it is waiting for an updated set to arrive. The above holdswithin the
GPU aswell. A corollary to this is that very often it is more efficient to recalculate
an existing result on the GPU again, rather than fetch it from a nonlocal location.

2. Accuracy issues that arise from hardware single precision (SP) limitations
need to be controlled in a way that is acceptable to the scientific algorithm
being simulated. Approaches to this include sorting floats by size prior to
addition and making careful use of double precision (DP) where needed [15].

3. Recasting the problem in a vector fashion that groups data that will be
operated on in the same way allows for maximizing the efficiency of the SPs.

It should be clear from the above discussion that while GPUs offer an attrac-
tive price performance ratio, there are significant hurdles to utilizing them
efficiently. Indeed, in some cases, the development costs of GPU-specific code
may negate the cost/performance benefits.

8 Ross C. Walker et al.

3. GPU-BASED IMPLEMENTATIONS OF CLASSICAL MOLECULAR
DYNAMICS

As illustrated in the previous section, GPUs have come a long way in terms of their
ease of use for general purpose computing. In the last four years, beginning in 2006,
NVIDIA’s CUDA and ATI’s Stream APIs have made programming GPUs signifi-
cantly easier and the addition of DP hardware in NVIDIA’s GT200 line and ATI’s
FireStream series has facilitated effective implementation of MD algorithms. Due to
the reasons discussed above, GPUs are still significantly more complex to program
than traditional CPUs. However, the potential cost/performance benefit makes them
enticing development platforms. It is only very recently, however, that the use of
GPUs for MD simulations has begun to mature to the point where fully featured
production MD codes have appeared. The lure of very high performance improve-
ments for minimal cost has influenced early attempts at accelerating MD on GPUs.
Aswe see below, the race to developMDcodes on this “new” hardware has ledmany
to take inappropriate or untested approximations rather than taking the time to
address the shortcomings of GPUs. It is also very difficult to compare successes
and performance between implementations since a number of manuscripts show
only speedups of small parts of the code or comparison against very different types of
simulations. A detailed look at what appears, at first sight, to be a very crowded and
successful field uncovers only a few select codes that could be considered production
ready. In this section, we provide an overview of the peer-reviewed literature on
GPU-based MD along with a discussion of these production ready codes.

3.1 Early GPU-based MD code development

In what was arguably the first published implementation of GPU-accelerated
MD, Yang et al. [19] reported an algorithm designed for MD simulation of
thermal conductivity. This work was prior to the release of the CUDA and Stream
APIs and hence the authors were forced to implement their algorithm directly in
OpenGL [21]. Using an NVIDIA GeForce 7800 GTX, they observed performance
improvements of between 10 and 11 times that of a single Intel Pentium 3.0GHz
processor. While an impressive proof of concept, the Yang et al. implementation
was very simplistic containing just Lennard—Jones interactions and a neighbor
list that was constructed to remain static over the course of the simulation. It thus
lacked many of the important features, such as covalent terms, short- and long-
range electrostatics, thermostats, barostats, neighbor list updates, and restraints
needed for MD of biological systems. Nevertheless, this pioneering study demon-
strated that implementing an MD code on GPUs was feasible.

The advent of the CUDA and Stream programming APIs made programming
GPUs significantly easier and brought with them an explosion of GPU MD
implementations. Most early implementations of MD on GPUs are characterized
by an exploration of the field with the development of codes and GPU-specific
algorithms focused on simplistic, artificial, or very specific model problems
rather than the application of GPUs to “real-world” production MD simulations.

Advancements in MD Simulations of Biomolecules on GPUs 9

The first apparent MD implementation to use CUDA was by Liu et al. [22].
Like Yang et al., they too chose to implement just a simplistic van der Waals
potential allowing them to avoid all of the complexities inherent in production
MD simulations of condensed-phase systems. Unlike Yang, Liu et al. recomputed
their neighbor list periodically providing the first example of a neighbor list
update for MD on GPUs.

Stone et al. [23] published a lengthy discussion on the implementation of a
series of target algorithms for molecular modeling computations, including tech-
niques for direct Coulomb summation for calculating charge—charge interactions
within a cutoff. They also discussed possible techniques for evaluation of forces
in MD, providing the first mention of a combined treatment of direct space van
der Waals and electrostatics in a GPU implementation. Their implementation,
however, did not include any actual MD but instead focused on the more
simplistic applications of ion placement and the calculation of time-averaged
Coulomb potentials in the vicinity of a simulated system. While providing an
example of how Coulomb interactions can be accelerated with GPUs and laying
the groundwork for developing an experimental GPU-accelerated version of
NAMD [24], the example applications are of limited interest for conducting
production MD simulations.

Following on the heels of Yang et al., a number of groups begun implement-
ing their own MD codes on GPUs although most were still simply proof-of-
concept prototypes with limited applicability for production MD calculations.
For example, van Meel et al. [25] implemented a cell-based list algorithm
for neighbor list updates but still only applied this to simple van der Waals
fluids while Rapaport [26] provided a more detailed look at neighbor list
approaches for simple van der Waals potentials. Anderson et al. [27] were the
first to include the calculation of covalent terms, adding GPU computation
of van der Waals and harmonic bond potentials to their HOOMD code in
order to study nonionic liquids. They also included integrators and neighbor
lists in their implementation; however, while the HOOMD GPU implementation
went a step closer to a full MD implementation, it still neglected most of
the complexities including both short- and long-range electrostatics, angle
terms, torsion terms, and constraints required for simulating condensed-phase
systems.

Davis et al. [28] used a simple truncated electrostatic model to carry out
simulations of liquid water. Their approach was similar to Anderson but also
included angle and short-range electrostatic terms. While a demonstration of a
condensed-phase simulation, the approach used was still extremely restrictive
and of limited use in real-world applications.

These early GPU-based MD implementations are characterized by signifi-
cantly oversimplifying the mathematics in order to make implementation on a
GPU easier, neglecting, for example, electrostatics, covalent terms, and hetero-
genous solutions. This has resulted in a large number of GPU implementations
being published but none with any applicability to “real-world” production MD
simulations. It is only within the last year (2009/2010) that useful GPU imple-
mentations of MD have started to appear.

10 Ross C. Walker et al.

3.2 Production GPU-based MD codes

The features typically necessary for a condensed-phase production MD code
for biological simulations are explicit and implicit solvent implementations,
correct treatment of long-range electrostatics, support for different statistical
ensembles (NVT, NVE and NPT), thermostats, restraints, constraints, and
integration algorithms. At the time of writing, there are only three published
MD GPU implementations that could be considered production quality codes.
These are the ACEMD code of Harvey et al. [29], the OpenMM library of
Friedrichs et al. [30], and NAMD of Phillips et al. [24], although other inde-
pendent implementations such as support for generalized Born implicit solva-
tion in AMBER 10 [10] (http://ambermd.org/gpus) and support for explicit
solvent PME calculations in AMBER 11 [31] are available but have not yet been
published.

The ACEMD package by Harvey et al. could be considered the first GPU-
accelerated fully featured condensed-phase MD engine [29]. This program
includes support for periodic boundaries and more importantly both short-
and long-range electrostatics using a smooth particle mesh Ewald (PME)
approach [32—34]. The OpenMM library initially only implemented the impli-
cit solvent generalized Born model on small- and medium-sized systems using
direct summation of nonbonded terms [30]; Eastman and Pande further
improved the OpenMM library and adapted it to explicit solvent simulation
[35] although initially using reaction field methods instead of a full treatment
of long-range electrostatics. Additionally, a GPU-accelerated version of GRO-
MACS has been developed which works via links to the OpenMM library.
GPU acceleration of explicit solvent calculations are also available in NAMD
v2.7b2, although acceleration is limited since only the direct space nonbond
interactions are calculated on the GPU at present, necessitating a synchroniza-
tion between GPU and CPU memory on every time step [24]. A comparison of
the key features of production MD codes, at the time of writing, is listed in
Table 2. From a functionality perspective, at the time of writing, AMBER 11
includes the broadest set of features, capable of running implicit and explicit
solvent simulations in all three ensembles with flexible restraints on any
atoms as well as allowing the use of multiple precision models although it
only supports a single GPU per MD simulation at present. Some of the other
codes do not include all of the key features for MD simulation such as
pressure coupling and implicit solvent models although this will almost
certainly change in the future. The NAMD implementation is CPU centric,
focusing on running MD in a multiple node, multiple GPU environment,
whereas others implement all MD features on the GPU and strive to optimize
MD performance on a single GPU or multiple GPUs on a single node. We note
that of all the production MD codes available OpenMM is the only one to
support both NVIDIA and ATI GPUs; the others are developed just for
NVIDIA GPUs. We also note that ACEMD and AMBER are commercial pro-
ducts, whereas the others are available under various open-source licensing
models.

Advancements in MD Simulations of Biomolecules on GPUs 11

Table 2 Key feature comparison between the GPU-accelerated MD codes

Code Simulation implementation GPU acceleration Multiple GPU support GPU type Licensing model

ACEMD Explicit solvent, PME, NVE,
NVT, SHAKE

All features Three GPUs at present NVIDIA Commercial

OpenMMa Explicit solvent, implicit
solvent (GB), PME, NVE,
NVT, SHAKE

All features Single GPU at present ATI/NVIDIA Free, open source

NAMD Explicit solvent, PME, NVE,
NVT, NPT, SHAKE,
Restraint

Direct space on
nonbonded
interactions
only

Multiple GPUs on multiple
nodes, but scalability
bottlenecked by internode
communication

NVIDIA Free, open source

AMBER11
(PMEMD)

Explicit solvent, implicit
solvent (3 GB variants),
PME, NVE, NVT, NPT,
SHAKE, Restraint

All features Single GPU at present NVIDIA Commercial
(source
available)

aGROMACS has been implemented with OpenMM.

12
Ross

C
.W

alker
et

al.

4. PERFORMANCE AND ACCURACY

4.1 Performance and scaling

The performance of MD simulations on modern clusters and supercomputers is
currently limited by the communication bottlenecks that occur due to the sig-
nificant imbalances that exist between CPU speeds and hardware interconnects.
The use of GPUs does nothing to alleviate this and indeed actually exacerbates
it by making an individual node faster and thus increasing the amount of
communication per unit of time that is required between nodes. For this reason,
GPU-accelerated MD does not offer the ability to run substantially longer MD
simulations than are currently feasible on the best supercomputer hardware, nor
does it provide a convincing case for the construction of large clusters of GPUs;
however, what it does offer is the ability to run substantially more sampling
on a workstation or single node for minimal cost. The huge performance gap
that exists between cluster interconnects and GPUs has meant that the majority
of implementations have focused on utilizing just a single GPU (OpenMM,
AMBER) or multiple GPUs within a single node (ACEMD). Only NAMD has
attempted to utilize multiple nodes but with success that is largely due to
simulating very large systems and not attempting to optimize single-node per-
formance, thus requiring large numbers of GPUs to achieve only modest speed-
ups and negating many of the cost/performance benefit arguments. Thus the
benefit of GPUs to condensed-phase MD should be seen in the concept of
condensing small (2—8 node) clusters into single workstations for a fraction of
the cost rather than providing a way to run hundreds of microseconds of MD per
day on large clusters of GPUs.

A fair comparison of performance across current implementations is very
difficult since it is almost impossible to run identical simulations in different
programs, and indeed even within the same program it is not always possible to
make a fair comparison since additional approximations are oftenmade to theGPU
implementation in the desire to achieve larger speedups without considering such
approaches on the CPU. There are also numerous situationswhere people compare
the performance of individual kernels, such as the Coulomb sum, rather than the
complete implementation. Indeed a careful look at the current literature finds
speedups ranging from 7 to 700þ. To understand why such numbers might be
misleading, consider, for example, the performance reported by Davis et al. [28] in
which they compare simulations of various boxes of water with their GPU imple-
mentation against that of the CHARMM [36] code. They claim on average to be 7�
faster than CHARMM on a single CPU but at no point in their paper mention the
version of CHARMM used, the compilers used, or even the settings used in the
CHARMM code. It should be noted that, largely for historical reasons, the use of
default settings in CHARMM tends to give very poor performance. There are then
of coursemultiple optimizations that can bemade on theGPUdue to the simplicity
of the water model. The first is the use of cubic boxes which can benefit vectoriza-
tion on the GPU, for codes supporting PME it also provides more optimum fast
fourier transform (FFT) performance. The second is the use of the SPC/Fw water

Advancements in MD Simulations of Biomolecules on GPUs 13

model [37] which avoids the complexities of doing SHAKE-based constraints on
the GPU. Finally, the use of a pure water box means that all molecules are
essentially identical. This allows one to hard code all of the various parameters,
since all bonds are identical, all oxygen charges are identical, etc., and thus avoid
the additional costs associated with doing such lookups on the GPU. For these
reasons, the performance and speedups quoted for various GPU implementations
should typically be considered an upper bound on the performance achievable.

Additionally, many factors determine the performance of GPU-accelerated
MD codes. Implicit solvent simulations in general show much greater perfor-
mance boosts over explicit solvent simulation due to the reduced complexities
of the underlying algorithm. Specifics include avoiding the need for FFTs and the
use of infinite cutoffs which in turn remove the complexity of maintaining a
neighbor list. Friedrichs et al. [30] reported more than 60-fold speedup between
their single-precision OpenMM code and presumably AMBER 9’s DP Sander
implementation for systems of 600 atoms and more than two orders of magnitude
speedup for systems of 1200 atoms in OpenMM implicit solvent simulations [30].
Similar speedup has been observed in direct comparisons between AMBER’s
PMEMD code running on 2.8GHz Intel E5462 CPUs and NVIDIA C1060 Tesla
cards [38,39]. Phillips et al. reported up to 7-fold speedup for explicit solvent
simulation with GPU-accelerated NAMD, relative to CPU-based NAMD [40],
while OpenMM also showed impressive linear performance scaling over system
size in its non-PME explicit solvent simulations and at least 19-fold speedup
compared to single-CPU MD on simulations of the lambda repressor [30]. How-
ever, it is unclear from the OpenMM manuscript if the comparisons are like for
like since the AMBER and NAMD numbers appear to be for full PME-based
explicit solvent simulations. ACEMD showed that its 3-CPU/3-GPU performance
was roughly equivalent to 256-CPUNAMD on the DHFR system and 16-CPU/16-
GPU accelerated NAMD on the apoA1 system [29].

4.2 Validation

While the majority of articles describing new GPU MD implementations have
focused considerable attention on performance comparison to CPU simulations,
there has been very little effort to comprehensively test and validate the imple-
mentations, both in terms of actual bugs and in the use of various approxima-
tions such as single precision or alternative electrostatic treatments. Since DP
has only recently become available on GPUs and because SP still offers a more
than 10-fold performance enhancement, all of the GPU-based MD implementa-
tions use either single precision or a combination of hybrid single and DP math.
Several authors have attempted to provide validation of this and other approx-
imations but often only in a limited fashion while instead preferring to focus on
performance. For example, van Meel et al. [25] and Phillips et al. [24] made no
mention of validation. Davis et al. [28] simply ran their water box simulations
on the CPU and GPU and then provided plots of energy and temperature
profiles for the two simulations without any form of statistical analysis.

14 Ross C. Walker et al.

Liu et al. [22] simply stated that their CUDA version of the code gives output
values that are within 0.5% of their Cþþ version, while Anderson et al. [27] just
compare the deviation in atom positions between two runs on different CPU
counts and on the GPU.

Harvey et al. [29] attempted more in-depth validation of their code; however,
this was still far from comprehensive. For example, they stated in their manu-
script that “Potential energies were checked against NAMD values for the initial
configuration of a set of systems, ..., in order to verify the correctness of the force
calculations by assuring that energies were identical within 6 significant figures.”
Since scalar potential energies do not convey information about the vector forces,
it is unclear how the authors considered this a validation of their force calcula-
tions. They provide a table with energy changes in the NVE ensemble per
nanosecond per degree of freedom but do not provide any independent simula-
tions for comparison. The authors also state that “... we validate in this section the
conservation properties of energy in a NVT simulation ...” which is of little use in
validation since energy is not a conserved quantity in the NVT (canonical)
ensemble. Additionally, they carried out calculations of Na—Na pair distribution
functions using their ACEMD GPU code and also GROMACS on a CPU; how-
ever, the lack of consistency in the simulation parameters between GPU and CPU
and the clear lack of convergence in the results mean that the validation is
qualitative at best.

Friedrichs et al. [30] attempted to validate their OpenMM implementation by
simply examining energy conservation for simulations of the lambda repressor
and stating, although as with Harvey et al. not providing the numbers in the table
to ease comparison, that this compares favorably with other DP CPU
implementations.

The push to highlight performance on GPUs has meant that not one of the
currently published papers on GPU implementations of MD actually provide any
validation of the approximations made in terms of statistical mechanical proper-
ties. For example, one could include showing that converged simulations run on
a GPU and CPU give identical radial distribution functions, order parameters,
and residue dipolar couples to name but a few possible tests.

5. APPLICATIONS

While a significant number of papers published describe GPU implementations
of MD, a review of the literature reveals very few cited uses of these codes in
“real-world” simulations. Indeed only Pande et al. have such papers published at
the time of writing. This serves to underscore the nascent nature of this field.

5.1 Protein folding

In the only published examples of the use of GPU-accelerated bio-MD simula-
tions, Pande et al. have used the OpenMM library to study protein folding in

Advancements in MD Simulations of Biomolecules on GPUs 15

implicit solvent [41]. This work studied the folding pathways of a three-stranded
beta-sheet fragment derived from the Hpin1 WW domain (Fip35) [41] and the 39
residue protein NTL9 [42]. The estimated folding timescale of Fip35 experimen-
tally is ~13ms. With an average performance of 80—200ns/day on a single GPU,
for this 544-atom protein fragment and utilizing the Folding@Home distri-
buted computing network [43], they were able to generate thousands of inde-
pendent trajectories totaling over 2.73ms of ensemble-averaged results, with
an average length of 207 ns per trajectory and with some trajectories of greater
than 3ms in length allowing a direct exploration of the folding landscape.
Similar trajectory lengths were calculated for the NTL9 (922 atom) case. Addi-
tionally, Harvey and De Fabritiis performed a 1ms explicit solvent MD simu-
lation of the villin headpiece to probe its folding kinetics as part of their
ACEMD benchmark results and achieved 66 ns/day on a three-GPU-equipped
workstation [29]. These studies have demonstrated the significance of GPU-
accelerated MD implementations in helping researchers use personal work-
stations to reach simulation timescales that would typically only be possible
using large clusters and obtain ensemble-averaged results that provide sam-
pling timeframes comparable to experiment. This potentially opens the door to
studying a whole range of relevant biological events without requiring access
to large-scale supercomputer facilities.

6. CONCLUSIONS AND FUTURE DIRECTIONS

It should be clear from this chapter that the field of GPU acceleration of
condensed-phase biological MD simulations is still in its infancy. Initial
work in the field concentrated on artificially simplistic models and it is only
recently that production quality MD codes have been developed that can
make effective use of this technology. The pressure to achieve maximum
performance has led to a number of shortcuts and approximations being
made, many without any real validation or rigorous study. What initially
appears to be an established and extremely active field actually, upon scrap-
ing the surface, consists of only a few select codes which could be considered
to be production ready and even less examples of “real-world” use. However,
the current cost benefits of GPUs are enticing and this is driving both code
and hardware development.

In a few short years, GPU-based MD codes have evolved from proof-of-con-
cept prototypes to production-level software packages. Despite the substantial
progress made in the code development, the difficulty in programming GPU
devices still persists, forcing approximations to be made to circumvent some of
the limitations of GPU hardware. However, NVIDIA’s recently released Fermi
[44] architecture and the accompanying CUDA 3.0 library [15] for the first time
provides features such as full support for DP and error-correcting memory along
with amore versatile FFT implementation that many consider vital to effective use
of GPUs for MD simulations. Given this, a number of established groups in the
biological MD field are in the process of developing GPU-accelerated versions of

16 Ross C. Walker et al.

their software. This will bring more competition to the field and hopefully with it
a better focus on extensive validation of the approximations made.

It is anticipated that with the release of GPU versions of widely used MD
codes the use of GPUs in research involving MD will likely increase exponen-
tially over the coming years assuming that developers can demonstrate the
credibility of these implementations to the same degree to which CPU imple-
mentations have been subjected over the years.

ACKNOWLEDGMENTS

This work was supported in part by grant 09-LR-06-117792-WALR from the University of California
Lab Fees program and grant XFT-8-88509-01/DE-AC36-99GO10337 from the Department of Energy
to RCW.

REFERENCES
1. McCammon, J.A., Gelin, B.R., Karplus, M. Dynamics of folded proteins. Nature 1977, 267, 585—90.
2. Duan, Y., Kollman, P.A. Pathways to a protein folding intermediate observed in a 1-microsecond

simulation in aqueous solution. Science 1998, 282, 740—4.
3. Yeh, I., Hummer, G. Peptide loop-closure kinetics from microsecond molecular dynamics simula-

tions in explicit solvent. J. Am. Chem. Soc. 2002, 124, 6563—8.
4. Klepeis, J.L., Lindorff-Larsen, K., Dror, R.O., Shaw, D.E. Long-timescale molecular dynamics

simulations of protein structure and function. Curr. Opin. Struct. Biol. 2009, 19, 120—7.
5. Sanbonmatsu, K.Y., Joseph, S., Tung, C. Simulating movement of tRNA into the ribosome during

decoding. Proc. Natl. Acad. Sci. USA 2005, 102, 15854—9.
6. Freddolino, P.L., Arkhipov, A.S., Larson, S.B., Mcpherson, A., Schul-ten, K. Molecular dynamics

simulations of the complete satellite tobacco mosaic virus. Structure 2006, 14, 437—49.
7. Bakker, A.F., Gilmer, G.H., Grabow, M.H., Thompson, K. A special purpose computer for mole-

cular dynamics calculations. J. Comput. Phys. 1990, 90, 313—35.
8. Fine, R., Dimmler, G., Levinthal, C. FASTRUN: A special purpose, hardwired computer for

molecular simulation. Protein Struct. Funct. Genet. 1991, 11, 242—53.
9. Susukita, R., Ebisuzaki, T., Elmegreen, B.G., Furusawa, H., Kato, K., Kawai, A., Kobayashi, Y.,

Koishi, T., McNiven, G.D., Narumi, T., Yasuoka, K. Hardware accelerator for molecular dynamics:
MDGRAPE-2. Comput. Phys. Commun. 2003, 155, 115—31.

10. Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Crowley,
M., Walker, R.C., Zhang, W., Merz, K.M., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossvary,
I., Wong, K.F., Paesani, F., Vanicek, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Yang, L.,
Tan, C., Mongan, J., Hornak, V., Cui, G., Mathews, D.H., Seetin, M.G., Sagui, C., Babin, V., Koll-
man, P.A., AMBER 10, University of California, San Francisco, 2008.

11. Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling,
C., Wang, B., Woods, R.J. The amber biomolecular simulation programs. J. Comput. Chem. 2005,
26, 1668—88.

12. Yuri, N. Performance analysis of clearspeed’s CSX600 interconnects, in Parallel and Distributed
Processing with Applications, 2009 IEEE International Symposium, pp. 203—10.

13. Shaw, D.E., Deneroff, M.M., Dror, R.O., Kuskin, J.S., Larson, R.H., Salmon, J.K., Young, C., Batson,
B., Bowers, K.J., Chao, J.C., Eastwood, M.P., Gagliardo, J., Grossman, J.P., Ho, R.C., Ierardi, D.J.,
Kolossv�ary, I., Klepeis, J.L., Layman, T., Mcleavey, C., Moraes, M.A., Mueller, R., Priest, E.C., Shan,
Y., Spengler, J., Theobald, M., Towles, B., Wang, S.C. Anton, a special-purpose machine for
molecular dynamics simulation. SIGARCH Comput. Archit. News 2007, 35, 1—12.

14. Narumi, T., Ohno, Y., Noriyuk, F., Okimoto, N., Suenaga, A., Yanai, R., Taiji, M. In From Computa-
tional Biophysics to Systems Biology: A High-Speed Special-Purpose Computer for Molecular

Advancements in MD Simulations of Biomolecules on GPUs 17

Dynamics Simulations: MDGRAPE-3 (eds J. Meinke, O. Zimmermann, S. Mohanty and U.H.E.
Hansmann) J. von Neumann Institute for Computing, Jülich, 2006, pp. 29—36.

15. NVIDIA: Santa Clara, CA, CUDA Programming Guide, http://developer.download.nvidia.com/
compute/cuda/30/toolkit/docs/NVIDIACUDAProgrammingGuide3.0.pdf (Accessed March 6,
2010)

16. von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 1993, 15, 27—75.
17. Flynn, M.J., Some computer organizations and their effectiveness. IEEE Trans. Comput. 1972, C-21,

948—60.
18. Kirk, D.B., Hwu, W.W. Programming Massively Parallel Processors, Morgan Kaufmann Publish-

ers, Burlington, 2010.
19. Yang, J., Wang, Y., Chen, Y. GPU accelerated molecular dynamics simulation of thermal conduc-

tivities. J. Comput. Phys. 2007, 221, 799—804.
20. AMD: Sunnyvale, CA, ATI, www.amd.com/stream (Accessed March 14, 2010)
21. Woo, M., Neider, J., Davis, T., Shreiner, D. OpenGL Programming Guide: The Official Guide to

Learning OpenGL, version 1.2, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1999.
22. Liu, W., Schmidt, B., Voss, G., Müller-Wittig, W. In High Performance Computing–HiPC 2007:

Lecture Notes in Computer Science (eds S. Aluru, M. Parashar, R. Badrinath and V.K. Prasanna),
Vol. 4873, Springer, Berlin/Heidelberg, 2007, pp. 185—96.

23. Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L.G., Schulten, K. Accelerating
molecular modeling applications with graphics processors. J. Comput. Chem. 2007, 28, 2618—40.

24. Phillips, J.C., Stone, J.E., Schulten, K. Adapting a message-driven parallel application to gpu-
accelerated clusters, In SC ’08: Proceedings of the 2008 ACM/IEEE conference on Super comput-
ing, 1—9, IEEE Press, Piscataway, NJ, USA, 2008.

25. van Meel, J.A., Arnold, A., Frenkel, D., Portegies Zwart, S.F., Belleman, R.G. Harvesting graphics
power for MD simulations. Mol. Simulat. 2008, 34, 259—66.

26. Rapaport, D.C. Enhanced molecular dynamics performance with a programmable graphics pro-
cessor, arXiv Physics, 2009, arXiv:0911.5631v1

27. Anderson, J.A., Lorenz, C.D., Travesset, A. General purpose molecular dynamics simulations fully
implemented on graphics processing units. J. Comput. Phys. 2008, 227, 5342—59.

28. Davis, J., Ozsoy, A., Patel, S., Taufer, M. Towards Large-Scale Molecular Dynamics Simulations on
Graphics Processors, Springer, Berlin/Heidelberg, 2009.

29. Harvey, M.J., Giupponi, G., De Fabritiis, G. ACEMD: Accelerating biomolecular dynamics in the
microsecond time scale. J. Chem. Theory Comput. 2009, 5, 1632—9.

30. Friedrichs, M.S., Eastman, P., Vaidyanathan, V., Houston, M., Le Grand, S., Beberg, A.L., Ensign, D.
L., Bruns, C.M., Pande, V.S. Accelerating molecular dynamic simulation on graphics processing
units. J. Comput. Chem. 2009, 30, 864—72.

31. Case, D.A., Darden, T.A., Cheatham, T.E.III, Simmerling, C.L., Wang, J., Duke, R.E.,
Luo, R., Crowley, M., Walker, R.C., Williamson, M.J., Zhang, W., Merz, K.M., Wang, B., Hayik,
S., Roitberg, A., Seabra, G., Kolossv�ary, I., Wong, K.F., Paesani, F., Vanicek, J., Wu, X., Brozell, S.R.,
Steinbrecher, T., Gohlke, H., Yang, L., Tan, C., Mongan, J., Hornak, V., Cui, G., Mathews, D.H.,
Seetin, M.G., Sagui, C., Babin, V., Kollman, P.A. Amber 11, Technical report, University of Cali-
fornia, San Francisco, 2010.

32. Darden, T., York, D., Pedersen, L. Particle mesh ewald: An Nlog(N) method for ewald sums in
large systems. J. Chem. Phys. 1993, 98, 10089—92.

33. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G. A smooth particle
mesh Ewald method. J. Chem. Phys. 1995, 103, 8577—93.

34. Harvey, M.J., De Fabritiis, G. An implementation of the smooth particle mesh Ewald method on
GPU hardware. J. Chem. Theory Comput. 2009, 5, 2371—7.

35. Eastman, P., Pande, V.S. Efficient nonbonded interactions for molecular dynamics on a graphics
processing unit. J. Comput. Chem. 2010, 31, 1268—72.

36. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M. CHARMM:
A program for macromolecular energy, minimization, and dynamics calculations. J. Comput.
Chem. 1983, 4, 187—217.

37. Wu, Y., Tepper, H.L., Voth, G.A. Flexible simple point-charge water model with improved liquid-
state properties. J. Chem. Phys. 2006, 124, 24503.

18 Ross C. Walker et al.

38. Grand, S.L., Goetz, A.W., Xu, D., Poole, D., Walker, R.C. Accelerating of amber generalized born
calculations using nvidia graphics processing units. 2010 (in preparation).

39. Grand, S.L., Goetz, A.W., Xu, D., Poole, D., Walker, R.C. Achieving high performance in amber
PME simulations using graphics processing units without compromising accuracy. 2010
(in preparation).

40. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D.,
Kale, L., Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26,
1781—802.

41. Ensign, D.L., Pande, V.S. The Fip35 WW domain folds with structural and mechanistic hetero-
geneity in molecular dynamics simulations. Biophys. J. 2009, 96, L53—5.

42. Voelz, V.A., Bowman, G.R., Beauchamp, K., Pande, V.S. Molecular simulation of ab initio protein
folding for a millisecond folder NTL9(1-39). J. Am. Chem. Soc. 2010, 132, 1526—8.

43. Shirts, M., Pande, V.S. Computing: Screen savers of the world unite! Science 2000, 290, 1903—4.
44. NVIDIA Corporation Next generation CUDA compute architecture: Fermi, 2009.

Advancements in MD Simulations of Biomolecules on GPUs 19

