SOFTWARE ENGINEERING FOR CSE

Streamlining Development of a Multimillion-Line
Computational Chemistry Code

Robin M. Betz and Ross C. Walker | San Diego Supercomputer Center

]

E=
=)

Software engineering methodologies can be helpful in computational science and engineering projects. Here, a
continuous integration software engineering strategy is applied to a multimillion-line molecular dynamics code; the
implementation both streamlines the development and release process and unifies a team of widely distributed,
academic developers.

el =S — el |
- ;l i >

|

T .]

P he needs of computational science and en-

gineering (CSE) projects greatly differ from
those of more traditional business enterprise
! software, especially in terms of code valida-
tion and testing. Although software engineers have
expended considerable effort to simplify and stream-
line the development and testing process, such ap-
proaches often encounter problems when applied to
the scientific software domain. Testing is a notorious
example of this difference between the two fields.
Although business applications with a well-defined
usage are easily testable, scientific applications are
quite a different story. When the desired outcome
of a program is an unknown subject of research, the
traditional measurements of software validity used
by software engineers are difficult or even impossible
to define or establish. Tools designed to simplify the
development process often dont mesh readily with
the goals and development timescale of CSE codes,
and as a result, test suites are typically written from
scratch or not at all.

CSE codes are also typically developed quite dif-
ferently from other applications. Developers work-
ing on scientific code usually have backgrounds
that are quite different from those of software en-
gineers, approaching the discipline primarily from
a scientific background, and as such they’re often
unfamiliar with good development practices. This
is furcher complicated by the fact that groups are
often distributed among many universities and even
countries, making collaboration and group deci-
sion making complicated compared to a group of
software engineers working in the same office. CSE

Computing in Science & Engineering

developers are also researchers first and foremost,
and their goal is primarily to generate publication-
quality research, rather than develop maintainable,
extensible code using the latest development meth-
odologies. This frequently results in a developer cul-
ture that’s resistant to change, as the time required
to implement and understand a new methodology
can be prohibitive in a research environment.

Although the tools and methods used in soft-
ware engineering can be difficult to apply to sci-
entific projects, they provide significant benefits to
the development of scientific software. In this case
study, we adapt the software engineering practice
of continuous integration to assist in the validation
and testing of the molecular dynamics code pack-
age, Assisted Model Building with Energy Refine-
ment (Amber; htep:/ /ambermd.org).1 Although
there were several challenges in applying this meth-
odology to Amber’s complex and diverse code base,
the introduction of software engineering tools to
Amber has proven to be extremely useful in unify-
ing a geographically separated group of developers
with different computer and science backgrounds,
and ultimately has provided considerable benefits to
the project as a whole.

Background
Amber is a package of molecular simulation pro-
grams that’s widely used within the computational

cular biology

chemistry and computational «
communities. It includes 2 wide
that enable the simularion of
the atomic level. It includes mols for all stages of

lar systems at

1521-9615/14/$31,00 © 2014 |IEEE Copublished by the IEEE CS zmd T 4P May/June 2014

Ly Wi e)

the simulation workflow, from setting up the sim-
ulation, to running it efficiently, to conducting a
comprehensive analysis of the results. Amber also
includes a set of molecular mechanics force fields
that describe how atoms interact within a variety of
settings, and both the software and parameters are
under continuous development.

Amber has several unique characteristics that set
it apart from traditional software engineering proj-
ects. First, the project has been under continuous
development since its original publication in 1981
by the late Peter Kollman.? The first versions of Am-
ber were written on punch cards, and evidence of
this history can still be found in some of the code.
For example, some of the input file formats for Am-
ber are still described in terms of cards and namel-
ists, which can be quite confusing for new users.

The code itself reflects Amber’s extensive develop-
ment history. As with many CSE codes, most of the
simulation code is in Fortran. Although the language
is no longer commonly used in software engineering,
it remains popular in the CSE community because of
the complexity of transitioning existing code, and the
efficiency and ease of optimization and paralleliza-
tion. Although business applications are frequently
translated to more modern languages or rewritten for
newer technology, the effort of transitioning Amber
to a single, modern language is prohibitive given the
funding and time constraints placed on researchers.
As such, most new code added to Amber tends to
be in more commonly used languages, with C, C++,
CUDA, and Python being typical. The integration
of multiple languages into a single set of executables
adds to the complexity of building Amber.

Amber developers are a geographically and
academically diverse group, and are spread across
the United States and abroad, with limited
opportunities for direct communication. Currently,
the principal developers are at Rutgers University,
the University of Utah, the University of Florida,
SUNY-Stony Brook, and the University of California,
San Diego, with many other research institutions
also contributing.

The developers have a diverse set of research in-
terests and typically contribute to the code as it re-
lates to their research rather than considering code
development as their primary focus. This approach
is extremely common in the CSE world, where re-
searchers often have neither the time nor funding to
focus solely on software development.

Because each developer works primarily on one
program or aspect of a program, the Amber pack-
age is extremely modular, and the package is better

www.computer.org/cise

described as a toolset than a single integrated simu-
lation code. As a result of diverse contributions, Am-
ber has expanded from its original incarnation as a
preparation and simulation program and now sup-
ports force-field development, trajectory analysis,
and a wide variety of simulation types across all ma-
jor hardware from a single laptop to the most pow-
erful supercomputers.

The range of hardware on which researchers
run the Amber software is staggering. It has to
run on all major architectures, including less com-
monly encountered hardware such as IBM Power,
Blue Gene, Cray, and even ARM-based systems. It
additionally exploits GPUs to accelerate computa-
tion when possible’ and uses a message passing in-
terface (MPI) for parallel processing. In its 32 years
of existence, the Amber software has undoubtedly
been run on every major supercomputer and every
version of micro- or vector processor.

To be so portable, the program must be com-
piled from source by the user during the install
process, and must therefore support all major com-
pilers, including Intel, GNU, PGI, open64, Cray,
IBM, and Solaris Studio. The OpenMP* and MPI®
toolkits are used for parallelization, and much of the
simulation code also exploits GPUs using CUDA,°
allowing for extremely cost- and time-efficient sim-
ulations, but at the expense of even more complex
cross compilation.

Because each developer focuses primarily on
coding parts of Amber that relate to his or her re-
search interests, the software’s functionality as a
whole is often neglected. Amber developers meet
once a year to discuss the code base’s future, but
these meetings aren’t sufficient for addressing the fre-
quent problems that can arise in such a large project.
Many developers don't have the time or opportunity
to extensively test their code for every compiler that
Amber can use, and often don’t have access to some
of the high-end GPUs and other exotic hardware
that Amber supports.

The code is also highly complex, and as such,
changes in one part of the simulation code might
have side effects that aren't caught in an individual’s
examination of his or her own work. This is espe-
cially true for the parallel and GPU-accelerated
builds, because errors such as race conditions are
often subtle and difficult to replicate or identify.
These errors won't result in a program crash or error
message, might occur infrequently, and manifest as
extremely subtle differences in results.

Opverall, these complications result in errors that
are reported by users of hardware or compilers that

11

12

SOFTWARE ENGINEERING FOR CSE

haven’t been extensively tested as part of develop-
ment. As a result, those researchers can lose precious
computer time and developers must expend consid-
erable effort in correspondence to identify the exact
cause of the error. Debugging the problem can take
even more of a developers time, especially if the
error is in code that was written a long time ago.

Thus, the problems of the Amber project clearly
differ considerably from those encountered in tra-
ditional software engineering environments, where
developers work closely on a unified code base with
well-defined goals and managerial oversight. How-
ever, there remain common points of failure be-
tween all computational projects: all code must be
compiled and tested in some way before release, no
matter the domain. In this case, it’s both possible
and useful to apply solutions from software engi-
neering to address the problem of identifying errors
introduced into the build and test process of Amber
and other CSE codes.

Solutions from Software Engineering

The software engineering practice of continuous in-
tegration”® was adapted to create a common build-
and-test environment in which errors can be seen
on a commit-by-commit basis. This saves developers
time by running many tests on their own machines,
enables verification of more compiler and system
combinations, and, most importantly, catches bugs
more quickly.

We created a dedicated build-and-test system
that verifies that all supported compiler and parallel
combinations build and correctly run the tests. The
system is available to developers along with a commit
history to the central repository so they can identify
if their commit broke a test case or if it doesn't work
with a certain compiler (that they might not have ac-
cess to on their personal machines).

Martin Fowler identifies several elements of a
proper continuous integration environment.” Most
of these principles are already present in the Am-
ber project, having been introduced by agreement
among the developers regarding good practices.
However, the developers were unaware of continu-
ous integration and as such had not yet created a
dedicated continuous integration server nor formal-
ly identified its components. We therefore identify
each of these principles and discuss their applicabil-
ity and incorporation into Amber development.

Maintain a Single-Source Repository
One important aspect of continuous integration is
maintaining a common source repository that all

developers can access. This prevents divergence i
the code that leads to difficult-to-resolve conflicts g
close to release, and allows developers to monitos

each other’s work.

The current Amber development process main
tains a common git repository that all developers
add their code to once they’re comfortable sharing
it with others. The two main branches are of th
current release with patches, and a developmens
branch containing code that’s robust enough t
share but might not be fully ready to release. Each
developer commits code incrementally to the loca
branch, which can be hosted on a local machine o
on the central git server, which conducts compre
hensive backups and allows sharing of such devel
opment branches. This repository typically receive
upward of 10 commits per day.

Owing to Amber’s development process, com
mits typically occur frequently and without conflic
Merge conflicts are rare, because each developsa
typically stays focused on a subset of the code, ané
only edits other subsections to fix small errors, of
with permission and collaboration. Programming
can also be sporadic on the part of many research:
ers, because they typically use Amber in a researct
capacity most of the time and conduct developmen|
work only occasionally. To avoid local branches be
coming substantially out of date, each developer i
encouraged to create a new branch when starting
work on a new project and to pull and merge with
the master as frequently as possible.

Automate the Build and Tests
As projects get larger, automated build-and-tes
systems can free developers from having to spend
time compiling source files and running tests od
their own. An automated build process allows fo
dependency resolution and easier support for man;
build options, such as the conditional compilatios
of CUDA code on systems with GPUs.

Amber uses GNU Make to automate its build
and-test process. Users run a configure script that
generates variables appropriate to their desired in
stallation, compiler, and options, and Make dog
the rest. A root-level Makefile calls sub-Makefile
in each folder containing a program. To add a ne
program to Amber, a developer need only write
sub-Makefile for the code and call it in the righ
place in the build hierarchy. A similar Makefi
structure is used to run tests on each program.

Software engineering solutions for this proble
can become cumbersome when applied to cod

like Amber. The history of Amber development,

May/June 28

code’s complex nature, and the variety of systems on
which it must be run justify the use of GNU Make-
files. Although other projects have had success with
alternative build systems such as CMake, the ben-
efits of converting Amber to CMake don't currently
offset the effort that would be involved. Testing the
resulting software also can be difficult, as the desired
behavior of code is often the subject of research, and
can be highly sensitive to convergence and sampling
issues. Nonetheless, validation is crucial, as the re-
sults of research depend on it.

The bugs Amber encounters aren’t limited to al-
gorithmic and logical bugs originating from coding
errors. Complex race conditions can occur in parallel
code, libraries can be problematic, and bugs can be
introduced in the machine code due to flaws in the
compiler’s logic. On multiple occasions in Amber’s
history, running the code has exposed underlying
design flaws in the microprocessor architecture. As
a project’s complexity grows, the possibility of an
error-producing interaction between two program
components grows exponentially. Testing is so criti-
cal to the success of a project that validation needs
10 be automated and integral to the build process, so
developers don't have to remember to test their code
manually.

Software engineering considerations dictate
that tests be conducted in the production environ-
ment rather than just on developer machines. We
define the production environment for our tests as
any computer, using any compiler and/or architec-
wre. The requirement of testing in this environ-
ment means that results must be reproducible no
matter what machines users have or system they're
irying to simulate. The Amber tests try to reflect
real-life use as much as possible, using real input
data rather than contrived examples. As a result, the
project contains more than 1 gigabyte of data in the
test cases alone.

Amber adopts the philosophy that results
should be both valid and reproducible, and devel-
opers construct their tests accordingly. Once code
is complete and the developer has verified it for cor-
rectness, the correct output (with a set random seed,
it the program uses the random number generator)
is saved. Tests will run the program (with the same
random seed) and compare the output to the saved
correct output. A tolerance value is set to account
for floating-point rounding differences arising from
different architectures and environments, and if the
difference between the two outputs is within the
tolerance, the test passes. Otherwise, it fails. The
test suite verifies all programs released as part of

www.computer.org/cise

Amber, and conducts tests that vary from building
and saving a molecule to running short simulations
at different levels of machine precision.

Simplify Deployment and Executable
Distribution

Deployment refers to the processes by which soft-
ware becomes usable on a new machine. Efficient,
automated deployment is a focus of continuous in-
tegration because without a streamlined installation
process, automated building and testing is impos-
sible. Software engineering projects often provide a
binary installer for supported architectures that sets
up binaries, libraries, and data files that the program
needs to run. Even open source projects usually
provide precompiled binaries in addition to source
code to simplify installation for users. However, this
isn’t always possible for CSE projects such as Am-
ber, which must run on multiple architectures.

Distribution of updates is critically important
to CSE projects, as the accuracy of users’ results can
depend on it. Developers should implement some
sort of checking for updates automatically and en-
sure that users can quickly and easily update to the
program’s latest version. Software engineering proj-
ects have similar concerns involving distribution of
updates to patch security holes or runtime errors,
and scientific software developers can use similar
methods to deliver updates.

Amber’s releases are often patched several
times, and many of these patches correct problems
that might lead to erroneous simulation or offer
significant speed improvements over the unpatched
version. It’s therefore crucial that users have the
latest version and can easily patch their software.
We ensure that users are aware of new patches by
encouraging subscription to a mailing list where
patches are announced and users may submit ques-
tions regarding use of the software.

The patch process for Amber 12 and Amber-
Tools12 has been greatly simplified with the addi-
tion of an automatic patching script. When users
prepare for compilation by running the configure
script, the patcher is automatically invoked and
checks the Amber website for project updates. It
then retrieves and applies the latest patches if neces-
sary. The user must then recompile Amber, because,
given the heterogeneity of architectures Amber runs
on, its impossible to deliver binary patches for the
software that would work for all users.

Deployment of CSE codes can range from triv-
ial to extremely complex depending on the applica-
tion and system. For Amber, users need only run

13

14

SOFTWARE ENGINEERING FOR CSE

the configure script, install dependencies if neces-
sary, and then run Make to obtain a fully func-
tional system in the time it takes to make a large
cup of coffee. Other CSE codes might need a more
involved process to resolve dependencies and make
executables accessible to the user.

Every Push Should Result in a Build

The most important component of continuous in-
tegration involves building and testing the code on
a dedicated machine or group of machines that fre-
quently reports to all the developers. This enables
code to be automatically compiled with all com-
binations of options, and the tests may be moni-
tored so that the effects of each commit are evident
almost immediately, racher than having to unravel
which commit is responsible for a particular error.

Many implementations of continuous inte-
gration servers exist, including Buildbot, Jenkins,
CruiseControl, Automated Build Scudio, and Hud-
son. The choice of server depends on the compile
language, the tests being run, the user interface de-
sired, and numerous other factors—including cost
and choice of open source or proprietary license.

This was the most challenging element of con-
tinuous integration to introduce to the Amber
project, because continuous integration software is
designed for use in the software engineering com-
munity and there was no out-of-the-box server
that offered all of the features we needed for our
scientific code. We set up a continuous integration
server using Thoughtworks’ CruiseControl (hetp://
cruisecontrol.sourceforge.net) to conduct auto-
mated building and testing in an easily extensible
manner. Although we encountered difficulties in
adapting the software to fit the broad needs of the
Amber project (see the “Implementation Details”
section), the introduction of the server has helped
simplify debugging and has resulted in numerous
improvements to the build and tests.

To keep build and test times to a minimum, we
built a dedicated machine to act as a servet. Solid
state drives were RAIDed to provide greater than
800 megabits per second (Mbit/s) of 1/O and to
allow for a number of targets to be run simulta-
neously without the I/O throttling that can occur
with spinning disks. We selected a high-end Nvidia
M2090 GPU to run the GPU-accelerated tests,
and used an 8-core processor at a high clock rate of
3.8 GHz to minimize the time for executing serial
aspects of the build process. This machine cost ap-
proximately $3,200, with the most expensive com-
ponent being the $2,000 GPU.

The compilation time for one of the Amber
build targets is approximately 8 to 10 minutes on
this machine, but the timings for the tests vary
from less than 10 minutes to more than half an
hour, depending on whether the tests are for se-
rial, parallel, or GPU code. Because the purpose of
our continuous integration server is to test as many
combinations of serial, parallel, and GPU code with
various compilers as possible, the server is set up to
allow multiple targets to be run at once to hasten
overall completion. This incremental testing is of-
ten referred to as a staged build, build pipeline, or
deployment pipeline in the software engineering
community.

Development Should Be Communicative

and Collaborative

Continuous integration aims to simplify the de-
velopment process by increasing transparency of
results and simplifying developers’ access to in
formation regarding the state of the code. Using &
server to conduct automated builds allows develop
ers to see who is committing and whose commitg
cause errors or significantly impact program speed

Good communication is important to any
software development project, and especially ta
scientific endeavors in which contributors are dis
tributed among various institutions. Continuous
integration practices allow geographically dispersed
teams to work more closely with each other, and
constant feedback on which parts of the code col
leagues are developing allows researchers to mors
clearly see opportunities for contribution.

The addition of the Java-based continuous in
tegration server, CruiseControl, has been extremel
beneficial to Amber development in this respect,
previously developers couldn’t see the immediate ef
fects of their commits on every compiler and op
tion. This often led to confusion over what bro
the build, and overall the development process wa
far more opaque.

Implementation Details
The continuous integration principle exists mainl
within the mainstream software engineering co
munity, and as such can be difficult to apply ¢
CSE projects. The implementation of an automate
build-and-test server is perhaps the most importa
step of the process, and unfortunately the most cha
lenging when it comes to scientific applications.
Of the 28 most common available continuot
integration servers, 60 percent were under a propr
etary license, making them difficult to modify a

May/June 20|

potentially unaffordable on a limited research bud-
get. Only half of the remaining servers supported
building from the command line, and even fewer al-
lowed success or failure notifications more complex
than an email. Amber uses the CruiseControl con-
tinuous integration server, which is primarily aimed
at Java applications but offers an elegant Web dash-
board that displays useful information about each
build target. The choice of CruiseControl was made
with the Amber build and test environment in mind,
although it wasn’t the only logical choice. For exam-
ple, the molecular dynamics project Gromacs'® has
had considerable success with the Jenkins continuous
integration environment (http://jenkins-ci.org).

CruiseControl assumes that all code tested with
it will also be in Java and built using Apache Ant,
which uses XML-based files to define how to com-
pile each target. Although Ant is primarily aimed at
compiling Java bytecode, its build definitions let us-
ers execute arbitrary commands. Our build scripts
each run the configure script with the appropriate
flags for the target, then executes “make install” to
begin compilation. Any errors in this process result
in the build being marked as failing. All of the com-
pilation targets are triggered whenever the code in
the main git repository is modified.

Build targets were created for all possible combi-
nations of serial, parallel, CUDA serial, and CUDA
parallel with the GNU and Intel compilers for Am-
ber and AmberTools. Several additional targets were
created to test building in parallel with different
make job counts, executing “make —X,” where X is
typically 1 to 16. This checks that the build order de-
pendencies are defined correctly in the Makefiles.

Test cases were defined as separate targets that are
triggered to run following a successful build of the
source code corresponding to the options and compiler
of the test target. Test targets aren't run or shown if the
compilation of the build target fails, and are considered
to pass if every test passes Amber’s comparison process.

Continuous integration servers must make
build results casily available to all developers. Most
servers feature a Web interface or regular email up-
dates, although numerous options are available,
including desktop notifications, RSS, or even a
Twitter feed. The Amber project used a Web inter-
face. CruiseControl’s Web interface, or dashboard,
is designed for software engineers who need an at-
a-glance display of whether the application is ready
to deploy, and features colored squares that indicate
whether a project is building, succeeding, or failed.

This sort of display is insufficient for the needs of
a scientific software project, where failure context is

www.computer.org/cise

Amber cudyara“e(Amber cuda_,garalie! intel-
e s
gnu-4.4.5 s 11.1.069 mw

Test serial gnu-4.4.6

el

Figure 1. Modified CruiseControl Web interface. Many
improvements were made to the interface, including
making project names easily viewable in the main build
window. Targets are represented with colored squares
by default.

extremely important. For example, if a new compiler
version is introduced and all of the tests suddenly
start failing, the problem might be a bug introduced
in the compiler rather than in the code. This scenario
is surprisingly plausible—certain compiler versions
won't compile Amber correctly due to bugs within
the compiler itself.

Because CruiseControl is open source, we were
able to modify the Web dashboard to provide more
useful information about each build and test. As Fig-
ure 1 illustrates, instead of showing colored squares,
each build is now clearly labeled with its name, so
developers can find the compiler and build options
resulting in failure with only a quick glance at the
dashboard.

This dashboard setup provides basic success or
failure information for many different ways of com-
piling Amber and running the tests. However, to
make the dashboard useful to developers, more in-
formation is needed regarding test results. The nature
of each test failure is important. Frequently, the toler-
ance on a test will be too stringent, and rounding dif-
ferences will cause the system to report a failure. Each
test target therefore runs a bash script that collects
all of the diff files created for a test run, and Cruise-
Control is configured to make them available via the
dashboard for easy inspection. If a build fails, the
error is shown on the dashboard, and log files from
both the build and test targets are made available for
download if developers wish to have more informa-
tion about tests that crashed before completion.

Testing for program correctness isn't sufficient
for the Amber project, however, because perfor-
mance is of paramount importance in our simula-
tion code. Someone could quite plausibly introduce

15

Dav‘]

Alfre

Ric

Bulbl
< Clay
| Edwe

SOFTWARE ENGINEERING FOR CSE

Time (seconds)

700
600
500
400

200
100

CUDA parallel Intel build

Error
More tests resolved
added
Library
error

introduced

Builds/commits q

Figure 2. Graphical display of time taken to complete the test targets for the CUDA parallel build of Amber using the Intel compiler.
Machine load affects the timing information somewhat, although the baseline level stays the same. Sharp changes in build time have

occurred from a variety of causes, and are labeled accordingly.

Speed
improvement

16

a useful commit that introduces no errors but signif-
icantly increases runtime. Such commits are nearly
impossible to identify before release, so finding them
right after they’re written is very helpful. We define
an approximate measure of code efficiency as the
time taken to complete the test targets.

Although CruiseControl doesn’t support the
collection and display of timing information, we ex-
tended it to provide this functionality. Time stamps
are written before and after running the tests, and
these values are passed to a script that subtracts
them and appends this value to a data file. The gnu-
plot graphing program is invoked to create a graph
of these values for the most recent 50 builds, and
this is made available on the Web interface so de-
velopers can have a visual representation of how the
latest commits affected program speed. Each data
point on the graph is marked by the number of tests
that failed with that build.

This graphing functionality has been extremely
useful to the Amber developers, who in addition to
gaining timing information now have data about
the number of failed tests in an easily accessible for-
mat. Figure 2 gives an overall picture of the changes
in Amber’s tests for one build target. Changes in
measured timing data can occur from changes in
code efficiency, addition or removal of tests, dy-
namic linking errors that prevent program launch,
and/or machine latency.

/\ lthough the amount of effort required to set up
4% and modify a continuous integration server to
fit the needs of scientific software might deter CSE
projects from adopting these techniques, once the
server was established, convincing developers of its
utility was straightforward, as the gains from having

immediate validation of each commit quickly be-
came evident.

Future goals for Amber’s continuous integra
tion environment include the creation of a bench
marking server to track the performance of serial
parallel, GPU serial, and GPU parallel Amber tas
gets on standard molecular dynamics benchmar
and the implementation of virtual machines
more thoroughly test different build environments
We might investigate other continuous integratiod
servers to provide this functionality, or continue &
extend CruiseControl if at all possible.

Overall, using continuous integration softwas
in the Amber project has been worth the effort, an
although we continue to look to improve the usg
fulness and robustness of the testing system, it hs
already been of significant utility in accomplishi
development goals and fostering unity among a d
verse team of developers. Bl

Acknowledgments

Ross Walker received funding for this work from t
US National Science Foundation through the Scientis
Software Innovations Institutes Program—NSF SI2-S§
(grants NSF1047875 and NSF1148276), a Univers:
of California grant (UC Lab 09-LR-06-117792), and
CUDA fellowship from Nvidia.

References

1. R. Salomon-Ferrer, D. Case, and R. Walker, “A
Overview of the Amber Biomolecular Simulatid
Package,” Wiley Interdisciplinary Reviews: Co
putational Molecular Science, vol. 3, no. 2, 205
pp. 198-210.

2. PK. Weiner and PA. Kollman, “Amber: Assisted Mo
Building with Energy Refinement. A General P4
gram for Modeling Molecules and Their Interactios

May/June 240

J. Computational Chemistry, vol. 2, no. 3, 1981,
pp. 287-303.

3. R. Salomon-Ferrer et al.,, “Routine Microsecond
Molecular Dynamics Simulations with AMBER on
GPUs. 2. Explicit Solvent Particle Mesh Ewald,”
J. Chemical Theory and Computation, vol. 9, no. 9,
2013, pp. 3878-3888.

4. L. Dagum and R. Menon, “OpenMP: An Industry
Standard API for Shared-Memory Programming,”
Computational Science o Eng., vol. 5, no. 1, 1998,
pp. 46-55.

5. M. Snir et al., MPL: The Complete Reference, MIT
Press, 1995.

6. Nvidia, Compute Unified Device Architecture Pro-
gramming Guide, 2007; http://docs.nvidia.com/
cuda/cuda-c-programming-guide.

7. P. M. Duvall, S. Matyas, and A. Glover, Continuous
Integration: Improving Software Quality and Reduc-
ing Risk, Addison-Wesley Professional, 2007.

8. J. Humble and D. Fatley, Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment

Simulation,” J. Chemical Theory and Computation,
vol. 4, no. 3, 2008, pp. 435-447.

Robin M. Betz is a member of the Walker Molecular Dy-
namics Lab at the San Diego Supercomputer Center. Her
research focuses on developing methods for improving
and assessing the accuracy of molecular dynamics simu-
lations. Betz has a BS in bioinformatics from the Uni-
versity of California, San Diego. Contact her at robin@
robinbetz.com.

Ross C. Walker is an associate research professor at the
San Diego Supercomputer Center, an adjunct associate
professor in the Department of Chemistry and Biochem-
istry at the University of California, San Diego, CEO of
Verizyme, and an Nvidia Fellow. He also runs the Walker
Molecular Dynamics Lab in San Diego. His research in-
terests include developing classical and quantum mechan-
ics/molecular dynamics (QM/MM) techniques. Walker
has a PhD in computational chemistry from Imperial
College. Contact him at ross@rosswalker.co.uk.

10.

Automation, Addison-Wesley Professional, 2010.
. M. Fowler and M. Foemmel, “Continuous Integra-
tion,” Thought-Works, 2006; hetp://martinfowler.

com/articles/continuousIntegration.html.
B. Hess et al., “GROMACS 4: Algorithms for High-
ly Efficient, Load-Balanced, and Scalable Molecular

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

AMERICAN
INSTITUTE
sl B

The American Institute of Physics is an organization
of physical science societies, representing scientists,
engineers, and educators. Through its Physics Resources
Center, AIP delivers valuable services and expertise in
education and student programs, science communications,
government relations, career services for science and
engineering professionals, statistical research in physics
employment and education, industrial outreach, and the
history of physics and allied fields. AIP publishes Physics
Today, the most influential and closely followed magazine of
the physics community, and is also home to the Society of
Physics Students and the Niels Bohr Library and Archives.

AIP owns AIP Publishing LLC, a scholarly publisher in the
physical and related sciences.

Governing Board*: Louis J. Lanzerotti (chair), Samuel
H. Aronson, Malcolm R. Beasley, G. Fritz Benedict,
J. Daniel Bourland, Robert L. Byer, Timothy A. Cohn, Beth
Cunningham, Bruce H. Curran, Robert Doering, Michael
D. Duncan, H. Frederick Dylla (ex officio), David Ernst,
Janet Fender, Judith Flippen-Anderson, Brian J. Fraser,
Jaime Fucugauchi, A. Jeffrey Giacomin, Timothy Grove,
Mark Hamilton, Paul L. Kelley, Angela R. Keyser, James
T. Kirby Jr, Kate Kirby, Frank Krause, Rudolf Ludeke, Jill
Marshall, Kevin B. Marvel, Christine McEntee, Mary Beth
Monroe, Elizabeth A. Rogan, Charles E. Schmid, Joseph
Serene, Neal Shinn, Scott Sommerfeldt, Gene Sprouse,
Gay Stewart, Hervey (Peter) Stockman, Michael Turner.
*Board members listed in bold are members of the
Executive Committee.

Management Committee: H. Frederick Dylla, Executive
Director and CEO; Gigi Swartz, Treasurer and CFO;
Theresa C. Braun, Vice President, Human Resources;
Catherine O’Riordan, Vice President, Physics Resources.

www.computer.org/cise

e —

17

