
Supporting information for: An extensible interface

for QM/MM molecular dynamics simulations with

AMBER

Andreas W. Götz,∗,† Matthew A. Clark,† and Ross C. Walker∗,†,‡

San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive, La

Jolla, CA 92093-0505, USA, and Department of Chemistry and Biochemistry, University of

California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0505, USA

E-mail: agoetz@sdsc.edu; ross@rosswalker.co.uk

1 Additional details of the AMBER implementation

The interface to electronic structure software has been integrated into the QM/MM code of the MD

engine SANDER and made available with release version 12 of the AMBER1–3 software package

for biomolecular simulations. For integration with SANDER, the existing QM/MM code has been

refactored such that the QM/MM driver subroutine obtains the QM contribution to the energy and

forces from a single call to a subroutine that initializes the built-in semiempirical code. A new

driver routine has been written in Fortran 90 that is called instead of the semiempirical code if an

external electronic structure program is used for a QM/MM calculation, as specified by setting the

qm_theory variable of the qmmm namelist in the AMBER input file mdin to ’EXTERN’.

∗To whom correspondence should be addressed
†San Diego Supercomputer Center
‡UCSD Department of Chemistry and Biochemistry

S1



The driver subroutine for the new QM/MM interface passes/retrieves all data to/from the in-

terface driver subroutines, as required for each supported electronic structure program (see Sec-

tion 2). In case of parallel runs with multiple replicas, such as replica exchange molecular dy-

namics (REMD) or path integral molecular dynamics (PIMD) simulations, the driver subroutine

determines the ID of the replica for each of the parallel threads.

2 Interface to electronic structure software

The interface consists of one Fortran 90 module for each of the supported electronic structure

programs. At the time of release of version 12 of AMBER, the following electronic structure

programs are supported for mechanical embedding:

• ADF4–6 (tested versions: 2009 to 2012)

• GAMESS7,8 (tested version: release October 1, 2010 R1)

• NWChem9 (tested version: 6.1)

and the following programs are supported for mechanical and electronic embedding:

• Gaussian10 (tested versions: g03 and g09)

• Orca11 (tested versions: 2.7.0 to 2.9.1)

• TeraChem12,13 (tested versions: 1.5)

Utility routines that are common to all electronic structure programs are collected in a separate

utility module.

2.1 Data communication with electronic structure software

Two different communication protocols are implemented for data exchange between the interface

and the QM programs. Communication via files and system calls is implemented for all supported

S2



software packages, while the MPI-2 based client/server model, at the time of writing, is only

supported by TeraChem.

Communication via files and system calls The standard mode of data communication between

the interface and the supported electronic structure programs proceeds via data files and system

calls for the execution of the electronic structure program. In this case the interface proceeds by

1. writing input files for the QM program that contain the current QM region atom types and

coordinates and the MM point charges and coordinates,

2. executing the QM program via a system call, and

3. parsing the output files of the QM program to retrieve the energy and forces and, if requested,

the dipole moment and atomic partial charges of the QM region atoms

If requested by the user the interface will store the dipole moment and atomic partial charges of

the QM region along an MD trajectory. The interface stores the in- and output files of the QM

calculation for both the present and the last call which simplifies debugging in case of program

crashes.

MPI-2 based client/server model A client/server model for data exchange based on version

2 of the message passing interface standard14 (MPI-2) is also implemented. Since this requires

corresponding changes to the electronic structure software, support is currently provided only by

TeraChem.15 In this case, the electronic structure code has to be started in server mode at the

beginning of a simulation. The interface then connects as a client and all subsequent data exchange

occurs via standard MPI calls as described below in section Section 2.3.

2.2 Fortran API

The Fortran 90 module for each supported electronic structure program exposes a driver

subroutine for exchange of relevant data with the MD program: get_adf_forces

S3



(for ADF), get_gms_forces (for GAMESS), get_nw_forces (for NWChem),

get_gau_forces (for Gaussian), get_orc_forces (for Orca), get_tc_forces

(for TeraChem), get_genmpi_forces (generic interface for MPI-2 client/server model).

The calling convention for modules with restriction to mechanical embedding (ADF, GAMESS,

NWChem) is (exemplified for ADF):

call get_adf_forces(do_gradient, nstep, ntpr, id,

& nqm, qmcoords, qmtypes, energy, dxyzqm, qmcharge, qmspin)

The calling convention for modules that support electronic embedding (Gaussian, Orca, TeraChem,

generic MPI-2) is (exemplified for Gaussian):

call get_gau_forces(do_gradient, nstep, ntpr, id,

& nqm, qmcoords, qmtypes, ncl, clcoords,

& energy, dxyzqm, dxyzcl, qmcharge, qmspin)

Data passed to the driver subroutines (intent in):

do_gradient logical, .true. if both energy and forces shall be calculated.

nstep integer, MD step number.

ntpr integer, frequency of printing (is used if dipole moment or atomic partial charges are re-

quested to be otuput).

id character(len=3), ID of the current thread. The QM calculation will be executed in a subdirec-

tory with corresponding in- and output file names. Useful to run multiple QM calculations

in parallel as for example in REMD and PIMD simulations.

nqm integer, number of atoms in the QM region, including link atoms.

qmcoords double precision, dimension(3,nqm), Cartesian coordinates of atoms in the QM region

in Angstrom.

S4



qmtypes integer, dimension(nqm), atom types of atoms in the QM region (nuclear charge in

atomic units).

ncl integer, number of atoms in the MM region that are included as point charges for electronic

embedding. Only for modules supporting electronic embedding.

clcoords double precision, dimension(4,ncl), Cartesian coordinates (Angstrom) and charges q

(atomic units) of point charges in order (x, y, z, q). Only for modules supporting electronic

embedding.

qmcharge integer, charge of the QM region.

qmspin integer, spin multiplicity of the QM region.

Data returned from the driver routines (intent out):

energy double precision, QM contribution to the QM/MM energy in kcal/mol.

dxyzqm double precision, dimension(3,nqm), QM contribution to the force acting on atoms in

the QM region, including link atoms, in kcal/(mol*Å).

dxyzcl double precision, dimension(3,ncl), QM contribution to the force acting on point charge

atoms in the MM region that are included in the electronic QM/MM Hamiltonian, in

kcal/(mol*Å). Only for modules supporting electronic embedding.

Control data for the QM runs (such as QM method or whether to use a template input file) is

obtained from a Fortran namelist corresponding to each supported electronic structure program as

described in the AMBER manual. The namelist is read from a formatted text file that is expected to

be connected to Fortran unit 5 (as is the AMBER input file mdin in the AMBER implementation).

2.3 API for MPI-2 based client/server model

To perform a QM/MM MD simulation using the MPI interface, an MPI version of the electronic

structure program has to be launched in server mode before the interface that is trying to connect to

S5



it, that is, in the case of AMBER before the MD program SANDER is executed. An MPI version

of the MD program can then be started (SANDER in the case of the AMBER implementation)

in which the interface is executed in client mode. For TeraChem,15 this can be controlled by

setting the Fortran namelist variable mpi in its input namelist to 1, while all other control data

for the QM runs (such as QM method or whether to use a template input file) is obtained in the

same fashion from the Fortran namelist as for data exchange using files and system calls. The

interface also implements a generic version of the MPI-2 client/server model for data exchange

that is not specific to TeraChem and which can be used to communicate with other electronic

structure software. The API is described below.

The QM program needs to open an MPI port and publish its name for connection by the inter-

face. Upon execution in client mode, the interface uses MPI_LOOKUP_NAME to look for a port

name that has been published under the service name qc_program_port. In the case of sim-

ulations with multiple replicas, such as PIMD and REMD in AMBER, an ID is appended, that is,

the corresponding thread will look for published service names qc_program_port.N, where

N runs from 1 to number of replicas.

MPI_LOOKUP_NAME(servicename, MPI_INFO_NULL, portname)

Next, the interface connects as a client to the published port and establishes a new MPI commu-

nicator via MPI_COMM_CONNECT that is used for all subsequent data exchange, which proceeds

via standard MPI send and receive calls.

MPI_COMM_CONNECT(portname, MPI_INFO_NULL, 0,

MPI_COMM_SELF, newcomm)

Next, the interface sends all settings for the QM program using MPI_SEND to rank 0 with

tag 1. The interface has obtained these settings either from the input file via the corresponding

namelist or uses default settings as described below or has read them as character strings from a

template input file (limited to 256 characters per line with a maximum of 128 lines). These settings

are sent only during the first call of the interface.

S6



MPI_SEND(settings, 128*256, MPI_CHARACTER, 0, 1, newcomm)

The advantage of sending the program settings as a character array is that no assumption about

the data type (character, integer number, floating point number) transmitted has to be made. The

electronic structure software can parse it as if it were a regular input file. Currently, the following

keyword/value pairs are sent by default, each occupying 256 characters with trailing blanks:

• ’method BLYP’

• ’basis 6-31G*’

• ’jbasis none’

• ’cbasis none’

• ’scfconv 1E-08’

• ’scfiter 100’

• ’guess read’

• ’gradient true’

• ’grid none’

All subsequent data exchange with the electronic structure program takes place during the first

and all subsequent calls of the interface. The interface sends the following data in order, using

MPI_SEND(data, size, MPI_DATATYPE, 0, 1, newcomm)

qmcharge size=1, MPI_INTEGER, charge of the QM region

qmspin size=1, MPI_INTEGER, spin multiplicity of the QM region

nqm size=1, MPI_INTEGER, number of QM atoms including link atoms

qmtypes size=2*nqm, MPI_CHARACTER, element names of QM atoms

S7



qmcoords size=3*nqm, MPI_DOUBLE_PRECISION, Cartesian coordinates of QM atoms

(Ångstrom)

ncl size=1, MPI_INTEGER, number of point charges

clcharges size=ncl, MPI_DOUBLE_PRECISION, point charge values (atomic units)

clcoords size=3*ncl, MPI_DOUBLE_PRECISION, Cartesian coordinates of point charges

(Ångstrom)

The number of QM atoms and the charge and spin multiplicity of the QM region are sent during

each MD step to allow for future implementations of flexible QM/MM approaches with changing

QM regions.

The interface then receives the following data, in order, using

MPI_RECV(data, size, MPI_DATA_TYPE, MPI_ANY_SOURCE,

MPI_ANY_TAG, newcomm, status)

energy size=1, MPI_DOUBLE_PRECISION, QM contribution to the QM/MM energy (atomic

units)

charges size=nqm, MPI_DOUBLE_PRECISION, atomic partial charges from population anal-

ysis (atomic units)

dipole size=4, MPI_DOUBLE_PRECISION, QM dipole moment (x, y, z, total; atomic units)

dxyzqm size=3*nqm, MPI_DOUBLE_PRECISION, QM contribution to the force acting on

atoms in the QM region, including link atoms (atomic units)

dxyzcl size=3*ncl, MPI_DOUBLE_PRECISION, QM contribution to the force acting on point

charge atoms in the MM region that are included in the electronic QM/MM Hamiltonian

(atomic units)

S8



Upon its last call, the interface invokes an MPI send command with a 0 value tag (instead of

sending the QM charge as laid out above) that should be interpreted by the electronic structure

code to disconnect and quit:

MPI_SEND(empty, 1, MPI_DOUBLE_PRECISION, 0, 0, newcomm)

References

(1) Case, D. A.; Cheatham III, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Jr., K. M. M.; Onufriev, A.;

Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668–1688.

(2) Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. WIREs Comput. Mol. Sci. 2012, in press.

DOI: 10.1002/wcms.1121.

(3) Case, D. A.; Darden, T. A.; Cheatham, T. E., III; Simmerling, C. L.; Wang, J.; Duke, R. E.;

Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B. P.; Hayik, S.; Roitberg, A.;

Seabra, G.; Swails, J.; Götz, A. W.; Kolossváry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.;

Wolf, R. M.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.;

Wang, J.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Sagui, C.;

Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. AMBER 12, University of

California, San Francisco, 2012.

(4) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. F.; van Gisbergen, S. J. A.;

Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931–967.

(5) Guerra, C. F.; Snijders, J.; te Velde, G.; Baerends, E. J. Theoret. Chem. Acc. 1998, 99, 391–

403.

(6) ADF2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands,

http://www.scm.com.

S9



(7) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.;

Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; John A.

Montgomery, Jr, J. Comput. Chem. 1993, 14, 1347–1363.

(8) Gordon, M. S.; Schmidt, M. W. Advances in in electronic structure theory: GAMESS a

decade later. In Theory and Applications of Computational Chemistry, the first forty years;

Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E., Eds.; Elsevier: Asterdam, 2005;

Chapter 41, pp 1167–1189.

(9) Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Dam, H. J. J. V.;

Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. Comp. Phys. Comm. 2010,

181, 1477–1489.

(10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;

Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.;

Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;

Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Ki-

tao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;

Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;

Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;

Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;

Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochter-

ski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;

Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.;

Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.

(11) Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73–78.

(12) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 1004–1015.

(13) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 2619–2628.

S10



(14) Message Passing Interface Forum, MPI: A Message-passing Interface Standard, Version

2.2; High-Performance Computing Center Stuttgart: University of Stuttgart, Nobeliusstr.

19, 70550 Stuttgart, Germany, 2009.

(15) Isborn, C.; Götz, A. W.; Clark, M. A.; Walker, R. C.; Martínez, T. M. J. Chem. Theory Com-

put. 2012, 8, 5092–5106.

S11


