
Improving the Efficiency of Free Energy Calculations in the Amber
Molecular Dynamics Package
Joseph W. Kaus,*,† Levi T. Pierce,†,‡ Ross C. Walker,†,‡ and J. Andrew McCammon†,§,∥,⊥

†Department of Chemistry and Biochemistry, ‡San Diego Supercomputer Center, §Center for Theoretical Biological Physics,
∥Department of Pharmacology, and ⊥Howard Hughes Medical Institute, University of California San Diego, La Jolla, California
92093-0365, United States

*S Supporting Information

ABSTRACT: Alchemical transformations are widely used methods to
calculate free energies. Amber has traditionally included support for alchemical
transformations as part of the sander molecular dynamics (MD) engine. Here,
we describe the implementation of a more efficient approach to alchemical
transformations in the Amber MD package. Specifically, we have implemented
this new approach within the more computationally efficient and scalable
pmemd MD engine that is included with the Amber MD package. The
majority of the gain in efficiency comes from the improved design of the calculation, which includes better parallel scaling and
reduction in the calculation of redundant terms. This new implementation is able to reproduce results from equivalent
simulations run with the existing functionality but at 2.5 times greater computational efficiency. This new implementation is also
able to run softcore simulations at the λ end states making direct calculation of free energies more accurate, compared to the
extrapolation required in the existing implementation. The updated alchemical transformation functionality is planned to be
included in the next major release of Amber (scheduled for release in Q1 2014), available at http://ambermd.org, under the
Amber license.

1. INTRODUCTION

Free energy calculations1 have been used for many different
applications including relative binding energy calculations for
drug design,2,3 solvation free energy calculations on drug-like
molecules,4 and determining the free energy change upon
mutation of an amino acid in a protein.5−7 There are many
methods for conducting free energy calculations8−10 ranging
from inexpensive, but more approximate methods, such as
docking,11 to intermediate methods, such as MM/PBSA,12,13 to
expensive, but less approximate methods, such as thermody-
namic integration (TI)14,15 and the multistate Bennett
acceptance ratio estimator (MBAR).16

These latter methods are more expensive for a variety of
reasons, including the need for unphysical intermediate states,
long simulation times, often complicated setup and analysis,
and the implementation of the method itself. Work by others
has described how to optimize the number of intermediate
states and reduce the simulation time while preserving the
accuracy of TI and MBAR methods.17−19 However, the
efficiency of the algorithm used to implement alchemical
transformations has not been examined. This paper focuses on
a more efficient implementation of alchemical transformations
in the Amber20 package. Free energies are calculated from these
alchemical transformations using TI or MBAR among other
methods.
Amber is a widely used software package for running MD

simulations, which has been in development for many
years.21−23 The main software packages for MD simulations
in Amber are sander and pmemd. The pmemd module of Amber

is a more efficient implementation of some of the features
available in sander, focused mainly on better parallel scaling and
GPU acceleration.22−26 In the current release (v12) of Amber,
alchemical transformations are only available in sander. We
introduce a more efficient implementation of alchemical
transformations in pmemd, which includes both algorithmic
and performance enhancements. This support for alchemical
transformations in pmemd is planned to be available as part of
the next version of Amber (scheduled for release in Q1 2014).

2. THEORY AND METHODS

2.1. Free Energy Calculations. A thermodynamic cycle is
often used in free energy calculations in order to make the
calculations computationally tractable. These cycles probe the
free energy difference between two states using nonphysical
transformations to connect the initial and final states.2 Each
segment in the thermodynamic cycle requires a separate
simulation. Figure 1 shows an example of a thermodynamic
cycle that is used when calculating relative binding free
energies. The alchemical transformation of one ligand to
another requires less computational time than the direct
calculation of the free energy of binding for each ligand. Free
energy is a state function, so the relative binding energy will be
the same, regardless of which path is used for the calculation.

Received: April 26, 2013

Article

pubs.acs.org/JCTC

© XXXX American Chemical Society A dx.doi.org/10.1021/ct400340s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

http://ambermd.org
pubs.acs.org/JCTC

TI is one method that can be used to calculate the free
energy difference for each segment. The free energy is
calculated using14

∫ λ
λ

Δ = ∂
∂

F
U

d
0

1

(1)

where ΔF is the free energy difference for a segment, U is the
potential energy of the system, and λ is a parameter that varies
the potential from the initial state where λ = 0 to the final state
where λ = 1. In practice, eq 1 is integrated numerically, with
simulations run at discrete values of λ. In order to determine
the error, the correlation time of the ∂U/∂λ values is
determined. Then, samples are taken from the complete data
set at intervals larger than this correlation time. This
subsampling removes correlations in the data, so that the
error can be determined using the standard deviation of these
values.
Besides TI, free energies can be calculated using MBAR.16 As

with TI, this method makes use of the calculated potential
energy at various values of λ. However, rather than integrate eq
1, MBAR uses the additional information of what the potential
energy would have been for each configuration calculated at all
of the other λ values. To calculate the free energies,16

∑ ∑̂ = −
−

∑ ̂ −= = =

f
u x

N f u x
ln

exp[()]

exp[()]i
j

K

n

N
i jn

k
K

k k k jn1 1 1

j

(2)

is solved self-consistently for the free energy ̂fi at each λ value
using reduced potential energy u calculated at the all λ values.
In practice, eq 2 can be solved using the freely available
pyMBAR program. This program can be downloaded from
https://simtk.org/home/pymbar. The statistical uncertainty
can also be calculated using pyMBAR. This method has been
shown to minimize the variance in the calculated free energies,
by making more efficient use of the simulation data.16−28 Both

TI and MBAR are post processing methods that can be applied
to alchemical transformation simulations. In both the sander
and pmemd implementations, the extra energies needed for
MBAR are calculated during the simulation, with little
additional cost compared to an equivalent TI simulation.
The potential energy varies smoothly from the initial to the

final state, using linear scaling or softcore terms. The general
functional form for the potential energy is

λ λ λ

λ λ

= + −

+

U q U q U q

U q

(,) () (1) (,)

(,)

i

f

common ,perturbed

,perturbed (3)

where Ucommon is the potential for the unperturbed atoms,
Ui,perturbed and Uf,perturbed are the potentials that correspond to
the initial and final states for the perturbed part of the system,
and q represents the 3N atomic coordinates. The potentials for
the initial and final states may include softcore van der Waals
(vdW) and electrostatic (EEL) terms, which improve the
efficiency and stability of the simulations.29−31

These potentials only modify the functional form of the
intermediate states; at the initial or final states (end states), the
potential energy is calculated using the original vdW and EEL
potential terms. A free energy calculation may make use of both
softcore potentials in a single-step transformation, or may just
use the vdW softcore term in a multistep transformation, with
the free energy associated with removing the charges calculated
in separate simulations. Both methods have been used in this
work.

2.2. Implementation. In this section, the differences
between the current (sander) and new (pmemd) implementa-
tions of alchemical transformations are discussed. This
discussion applies to both TI and MBAR post processing
methods, as the same simulation can be analyzed with both
methods.

2.2.1. Existing Implementation. In the current (Amber 12)
implementation, which uses the sander MD engine, a separate
topology is created for the initial and final states of the system.
Effectively, the code starts two simulations, one for the initial
state and another one for the final state. For a simulation that
does not use softcore potentials, the potential energy is
combined using

λ λ λ

λ λ

= − +

+ +

U q U q U q

U q U q

(,) (1)[() (,)]

[() (,)]

i i

f f

,common ,perturbed

,common ,perturbed (4)

which is equivalent to eq 3. Amber uses a pairwise potential, so
the above terms describe the pairwise interactions between
atoms.21 Ucommon describes the pairwise interactions between
atoms that are the same in the initial and final states. Ui,perturbed

and Uf,perturbed describe the interactions between the common
and perturbed atoms, as well as the interactions among the
perturbed atoms. For a simulation that includes softcore
potentials, eq 4 is modified so that the softcore atoms become
decoupled from the rest of the system, while the bonding terms
for the softcore atoms remain intact. The potential used for this
case is

Figure 1. Thermodynamic cycle for a relative binding free energy
calculation. The vertical arrows show ligand binding (squares) to a
protein (blue oval). The horizontal arrows show the alchemical
transformations between the two different ligands bound to the
protein (top) and free in solution (bottom). Free energy is a state
function, so ΔΔFbinding can be calculated using either path.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400340s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXB

https://simtk.org/home/pymbar

λ λ
λ

λ λ

λ

λ
λ

λ λ

λ

= −
−

+

+ +

+ +

+ +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

U q U q U q

U q U q

U q U q

U q U q

(,) (1)
1

1
(,) (,)

(,) ()

1
(,) (,)

(,) ()

i i n

i i

f f n

f f

,bsc , bsc

,perturbed ,common

,bsc , bsc

,perturbed ,common (5)

where Ubsc is the potential for the bonded interactions of the
softcore atoms and Unbsc is the potential for the nonbonded
interactions including the softcore atoms.31

Note that in eqs 4 and 5 the Ucommon term is calculated for
both the initial and final states. This calculation is redundant, as
Ucommon will always be the same for both states. In typical
alchemical free energy calculations, the number of perturbed
atoms is small compared to the total number of atoms in the
system. In this case, the number of pairwise interactions
between common atoms is much larger than the number of
pairwise interactions involving the perturbed atoms or softcore
atoms. In other words, the calculation of Ucommon is expensive
compared to the rest of the potential calculations needed for
the simulation.
The algorithmic efficiency can be quantified by comparing

the speed of the free energy calculation, in terms of the number
of nanoseconds that can be simulated in a day, to a regular MD
simulation (reference simulation) for either the initial or final
state using the same number of cores. In the current sander
implementation, the calculation is approximately 50% efficient,
as there are effectively two simulations running, one for each
end state.
The algorithmic efficiency can be improved by only

calculating Ucommon once for each step rather than twice. This
reduces the number of terms in the direct calculation and also
reduces the communication overhead between MPI threads.
For each step, the forces that correspond to Ucommon have to be
sent across nodes and combined using eqs 4 or 5. This can be
detrimental to the scalability of the program. Only the forces
for perturbed atoms need to be communicated and combined.
These changes are the basis for the new implementation of
alchemical transformations in pmemd. The idea to remove
redundant calculations has been implemented in other MD
programs, such as Gromacs.32 However, this is the first time
that this optimization has been applied in the Amber suite of
programs. We also introduce an additional optimization, which
may be beneficial for vdW-only free energy calculations.
2.2.2. New Implementation. In the new (pmemd)

implementation, only one topology is used, which contains
the common atoms and the atoms corresponding to the end
states. This “merged” topology removes the redundant
parameters involving the common atoms but still contains all
of the parameters for the perturbed atoms. In this work, a dual
topology was used; however, the implementation supports both
single and dual topology approaches.33 Creation of this
topology is straightforward and is discussed in the Supporting
Information. Only a single simulation is run, with all of the
terms that differ between the end states stored in separate
arrays. At the end of each step, these arrays are combined,
giving the same results as the sander version. However, the
functional form of the potential energy is different, as only one

set of calculations is carried out for the common interactions.
For simulations without softcore atoms, the functional form is

λ λ λ

λ λ

= + −

+

U q U q U q

U q

(,) () (1) (,)

(,)

i

f

common ,perturbed

,perturbed (6)

which is the same as eq 3. For softcore simulations the potential
form is

λ λ λ

λ λ λ

λ λ λ

= + + −

+ +

+ +

U q U q U q

U q U q U q

U q U q

(,) () (,) (1)

[(,) (,)] (,)

[(,) (,)]

i

i i f

f f

common ,bsc

,nbsc ,perturbed ,bsc

,nbsc ,perturbed (7)

where the difference between eq 5 and eq 7 is that the Ucommon
term is only calculated once per time step and there is no
division by λ. This reformulation of the potential energy is
more efficient as explained above, and allows softcore
simulations to be run at the end states where λ = 0 or λ = 1.
For a softcore simulation run using sander, the values of λ
cannot be too close to 0 or 1, because the potential energy
calculation becomes unstable for low or high λ values when
using eq 5. This can make it difficult to accurately determine
the free energy difference since simulations cannot be run at the
end states and so the values at the end points have to be
obtained by extrapolation. One possible work around is to use a
method of numerical integration that does not require sampling
at the end states which works in most cases but is not always
optimal. The new pmemd implementation, however, completely
removes any limitations on running at the end states, by using
eq 7 to calculate the potential energy.

2.3. Simulation Details. All of the simulations follow a
similar protocol; any details that are specific to a particular
system will be described below. The Amber 12 version of
sander, patched up to and including bugfix 11, and the modified
version of pmemd were used for these calculations. Protein
models used the Amber 99SB-ILDN force field,34,35 with the
TIP3P36 model for water. Neutralizing counterions, sodium or
chloride, were added to each system as needed. Ligands were
parametrized using the generalized Amber force field (GAFF)37

for the bonded and vdW parameters. Partial charges for ligands
were obtained using RESP38 fitting for the electrostatic
potentials calculated using Gaussian0339 at the Hartree−
Fock/6-31G* level of theory. A truncated octahedral periodic
box was used with a minimum distance of 15 Å between any
box edge and any solute atom. Long range electrostatics were
calculated using Particle mesh Ewald (PME),40 with a 1 Å grid.
Short range vdW interactions were truncated at 8 Å with a
continuum model long-range correction applied for energy and
pressure. Hydrogen bonds were constrained with SHAKE41 for
nonwater molecules and SETTLE42 for water molecules. This
allows for the use of a 2 fs time step.
The same initial coordinates were used for both the pmemd

and sander simulations. Initial geometries were minimized using
20 000 steps of steepest descent minimization at λ = 0.5. These
minimized geometries were then used for simulations at all λ
values. The number of λ values used varied between the
simulations and is discussed below. Each simulation was heated
to 300 K over 500 ps using the Langevin thermostat,43,44 with a
collision frequency set to 2 ps−1. The Berendsen barostat45 was
used to adjust the density over 500 ps at constant pressure, with
a target pressure of 1 bar and a 2 ps coupling time. 500 ps of
constant volume equilibration was followed by five independent

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400340s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXC

5 ns long constant volume production simulations. Energies
were recorded every 1 ps, and coordinates were saved every 10
ps. Production simulations recalculated the potential energy at
each λ value every 1 ps for later analysis with MBAR. Reference
simulations were run corresponding to the initial and final
states for each system. These were standard MD simulations, so
the only difference from the above protocol is that options
specific to free energy calculations were disabled. Scaling
simulations were run for 100 ps at constant volume, starting
from the equilibrated alchemical transformation or reference
simulation.
Unless otherwise noted, all simulations were run on 16 cores

of the SDSC Gordon Compute Cluster, with dual-socket Intel
Xeon E5 8-core 2.6 GHz CPUs in each node and QDR
InfiniBand interconnects. The current sander implementation
requires the core count (MPI tasks) to be a power of two for
efficiency while pmemd does not have this restriction. Thus, for
ease of comparison, we restricted both calculations to use 16
cores.
2.4. Model Systems. In this work, three types of free

energy calculations were used to test the new implementation:
the solvation free energy, the relative free energy of binding
(simply referred to below as the relative binding energy), and
the free energy change due to the mutation of a protein residue.
2.4.1. Solvation Free Energy. First, we calculated the

solvation free energy for an inhibitor of phenylethanolamine
N-methyltransferase (PNMT), which synthesizes epinephrine
from norepinephrine.49 The initial geometry for the inhibitor,
7-sulfamoyl-1,2,3,4-tetrahydroisoquinolinium, was taken from
the crystal structure of human PNMT (PDB 1HNN) chain A.49

The structure is shown in Figure 2a. A single chloride ion was
added to neutralize the net charge in the system. The atom
types and corresponding partial charges are included in the
Supporting Information. The free energy was calculated using

Δ = −F F Fsolvation water gas (8)

where Fwater is the free energy of the ligand in water and Fgas is
that of the gas phase ligand. Softcore potentials were used for
both vdW and EEL interactions. Nine λ values were used,
equally spaced between 0.1 to 0.9. To estimate the error in the
resulting free energy caused by omitting the end states,
additional simulations were run using the pmemd implementa-
tion at λ = 0.0 and λ = 1.0.
2.4.2. Relative Binding Energy. Next, the relative binding

energy of two inhibitors of PNMT was calculated. A
thermodynamic cycle was used to calculate the free energy.

One segment of the cycle is the difference in free energy with
the inhibitors bound, and the other segment is with the
inhibitors in solution. This is the same cycle that was shown in
Figure 1. This system has been studied previously,50,51 albeit
with a different simulation protocol. Initial coordinates for the
bound simulation were obtained from the crystal structure of
human PNMT (PDB 1HNN).49 As in the previous studies,50,51

the first ligand was 7-sulfamoyl-1,2,3,4-tetrahydroisoquinoli-
nium and the second was 1,2,3,4-tetrahydroisoquinolinium,
which is the first ligand with the sulfamoyl moiety removed
(Figure 2b). Missing heavy atoms were added using LEaP in
AmberTools.20 The cofactor S-adensoyl-L-homocysteine and
ligands were parametrized using the protocol described above.
The H++ webserver,52−54 at http://biophysics.cs.vt.edu/H++,
was used to determine the protonation states of the Histidine
residues.
The free energy was calculated using

Δ = −

Δ = −

F F F

F F F

bound ligand2,bound ligand1,bound

free ligand2,free ligand1,free (9)

where “bound” refers to the ligands bound to PNMT and “free”
refers to the ligands in water. The bound system had five
sodium ions added, and the free system had one chloride ion
added to neutralize the net charge. As with the solvation free
energy calculation, softcore vdW and EEL potentials were used
with the same λ values.

2.4.3. Mutation of a Protein. Finally, the free energy
difference between a wild-type and mutant protein was
calculated. The protein studied is N1 neuraminidase (NMD),
an influenza surface protein, bound to oseltamivir, an anti-
influenza drug. NMD has been the subject of structural and
theoretical studies.55−57 Arginine 371, a residue in the active
site that interacts directly with the drug oseltamivir, is mutated
to alanine (Figure 2c). This could be used as part of a
thermodynamic cycle to determine how this mutation affects
drug binding. However, we were only interested in determining
the accuracy of our new implementation, and so, the additional
simulations required for a complete thermodynamic cycle were
not performed.
The initial coordinates for this system came from the crystal

structure (PDB 2HU4) chain A.55 All of the histidine residues
were protonated in the ε position. Disulfide bonds were added
between cysteine residues based on the information in the
crystal structure. Four neutralizing sodium ions were added to
the system.

Figure 2. Model systems used in this study are representative of common free energy transformations. All model systems include explicit solvent,
which is not shown for clarity. (a) The model for the solvation free energy of the PNMT inhibitor 7-sulfamoyl-1,2,3,4-tetrahydroisoquinolinium. (b)
The model for the relative binding energy to PNMT (blue) for the same ligand (red) and the related molecule with the sulfamoyl functional group
removed (green). The cofactor is shown in licorice, and the protein is in the new cartoon representation given by STRIDE.46 (c) The model for the
R371A mutation in the active site of NMD: arginine 371 (green); alanine mutant (red). This residue makes a salt bridge with oseltamivir, an
inhibitor of NMD. Model images were rendered using the Tachyon module47 in visual molecular dynamics (VMD).48

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400340s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXD

http://biophysics.cs.vt.edu/H++

Unlike the previous simulations, the softcore EEL potential
was not used, so the calculation was broken down into three
steps. In the first step, the charges on residue 371 were
removed. Then, the softcore vdW potential was used to mutate
arginine to alanine, with no charge on the perturbed atoms.
Finally, the charges were restored on the mutated residue. The
free energy was calculated using

Δ = −

Δ = −

Δ = −

F F F

F F F

F F F

charge,wt wt,no charge wt,charge

vdW mut,vdW wt,vdW

charge,mut mut,no charge mut,charge (10)

where wt denotes the wild-type NMD and mut denotes the
R371A mutant. This multistep method should give the same
results as the single-step method, but there may be cases where
it converges more rapidly.30 For the charge removal
calculations, 11 equally spaced λ values were used, from λ =
0 to λ = 1. For the vdW calculation, the softcore vdW potential
was used, with nine equally spaced λ values from λ = 0.1 to λ =
0.9.
2.5. Accuracy and Efficiency Metrics. In order to

determine the accuracy and efficiency of our new implementa-
tion, we compared the free energies calculated from pmemd
simulations to equivalent sander simulations. The deviation
between the resulting free energies is

|ΔΔ | = |⟨Δ ⟩| − |⟨Δ ⟩|F F Fpmemd sander (11)

where ΔFpmemd and ΔFsander are the free energies calculated from
the alchemical transformations simulated using pmemd and
sander, respectively. The brackets denote an average over
independent simulations. The uncertainty in the deviation is

σ σ σ= +ΔΔ Δ ΔF F F
2 2

pmemd sander (12)

where σΔF is the standard deviation of the free energy over
independent simulations. We also define ΔFwindow as the free
energy difference for the alchemical transformation between
adjacent λ values. Then eq 11 is used to calculate |ΔΔFwindow|,
the deviation between each pair of λ values.
It is well established that a standard MD simulation will run

more quickly in pmemd than in sander for the same number of
cores.22,23 The metric used to determine the algorithmic
efficiency of the new implementation, as opposed to the raw
performance, has to be independent of the absolute speed of
the calculation in either program. In this work, the algorithmic
efficiency is defined as

=algorthmic efficiency
speed of free energy calc.
speed of reference calc. (13)

where the speed is in ns/day and reference calculations refers to
classical MD simulations of the end states for the system being
studied. The speed was averaged over all λ values for the free
energy calculations and over both end states for the reference
simulations. This is the key metric, as it shows which
implementation is more efficient, regardless of the absolute
speed of the program that it is implemented in. The overall
change in performance from both improvements in the
algorithmic efficiency and the optimization of the code in
pmemd can be quantified with the relative speed (rel. speed)

=
pmemd
sander

rel. speed
speed of free energy calc. in
speed of free energy calc. in (14)

3. RESULTS AND DISCUSSION
3.1. Comparison of the Calculated Free Energies. The

most important assessment of the implementation is to make
sure it is correct. Here, we compare the pmemd implementation
to the widely used sander implementation since both programs
are part of Amber20 and provide equivalent results for standard
MD simulations. This makes direct comparison of the results
straightforward, as it avoids issues arising from differences in
the results due to different algorithms or force field parameters,
and thus, in principal, it is only limited by convergence of the
sampling. As discussed, most of the free energies were
calculated without including the end states due to the
limitations in the original sander implementation. For
comparison purposes, we are thus calculating the free energy
difference between two nonphysical states λ = 0.1 to λ = 0.9. To
estimate the error in the resulting free energy caused by not
including the end states, we used the pmemd implementation to
run alchemical transformations at the end states for the
solvation free energy system. When these end states are
included, the free energy decreased by 20 kcal/mol, suggesting
that these states are important for correctly calculating the free
energy. However, our goal with this work is to compare the
sander and pmemd implementations at the λ values that can be
used with both implementations.
The deviation in the free energies, calculated using eq 11, is

shown in Figure 3. All of the deviations are within 0.5 kcal/mol,

with the largest uncertainty calculated for the solvation free
energy system. This system is difficult to converge, as it
involves complete decoupling of a ligand from the solvent.
These results indicate that the implementation of alchemical
transformations in pmemd matches the results from the sander
implementation.
To further examine the deviations in the resulting free

energies, |ΔΔFwindow|, the deviation for each pair of adjacent λ
values was calculated for each model system as shown in Figure
4. A per window deviation of 0 kcal/mol indicates that the free
energy difference between adjacent λ values is the same for the

Figure 3. Deviation for each model system, defined as the magnitude
of the difference between the free energies calculated using pmemd and
sander, averaged over five independent simulations (eq 11). Error bars
represent the propagation of the standard deviation of the free energies
calculated from independent simulations (eq 12). The production
stage for each window was simulated for 5 ns.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400340s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXE

pmemd and sander calculations. All of the differences are under
1 kcal/mol, with the largest deviations found with the solvation
free energy and wild type charge removal calculations. These
results indicate that the deviations are simply due to small
differences in which states were sampled in the pmemd or
sander calculations. This issue is inherent to all stochastic
simulations, as a simulation with different random velocities will
explore different configurations resulting in slightly different
free energies.
These model systems are representative of common

transformations in free energy calculations. We have shown
that the new implementation of alchemical transformations in
pmemd reproduces the results from equivalent simulations run
with sander. The small deviation in the resulting free energies is
due to the stochastic nature of the simulations, where the
perturbed atoms explore slightly different regions of phase
space in the pmemd and sander simulations.
3.2. Algorithmic Efficiency of the New Implementa-

tion. The new implementation of alchemical transformations in
pmemd has been shown to produce results equivalent to the
original sander implementation. Next, we examined the
algorithmic efficiency of the new implementation (Figure 5a).
These results show that the original sander implementation is
approximately 50% efficient, as expected, while the new pmemd
implementation is between 75% and 95% efficient. The range is
due to an additional optimization, which will be discussed
below. This corresponds to a gain in algorithmic efficiency of
1.5 to 2 times over the original implementation.
Much of the algorithmic efficiency gain is due to the removal

of the redundant calculation of Ucommon in eqs 6 and 7.
However, these gains are still limited due to the need to
calculate the reciprocal sum for PME40 twice, once for each end

state. This limitation arises from the nonlinearity of the
reciprocal sum, so it cannot be decomposed into pairs. In the
case of the vdW-only transformation, the mutated residue has
had all charges removed, so the value for the reciprocal sum was
the same for both end states. In this case, pmemd only calculates
the reciprocal sum once, leading to a 20% increase in the
algorithmic efficiency of the calculation. This applies to all
vdW-only transformations and will be automatically detected.
Breaking up a free energy calculation into multiple steps may

prevent certain convergence issues that can be seen with single-
step transformations. However, a multistep transformation
requires three steps, while a single-step transformation requires
only one step. The type of transformation to be used will
depend on the details of the system under study.30 It may be
beneficial to use a multistep transformation in certain cases, and
in these cases, the vdW-only transformation will run more
efficiently in pmemd than the other transformations.
The relative speed (Figure 5b) shows that using pmemd over

sander reduces the computational cost by a factor of at least 2.5
times regardless of the type of free energy calculation. The
additional gain in relative speed seen with the vdW-only
transformation is due to the optimization discussed. The
algorithmic efficiency gain depends on the number of atoms
that are perturbed between the end states. However, for typical
alchemical transformations, only a small number of atoms are
perturbed to prevent sampling issues. For these systems, there
is a clear benefit in using the new, more efficient, pmemd
implementation.

3.3. Scaling of the New Implementation. The new
implementation in pmemd is more algorithmically efficient, but
it is also important to quantify how well it scales to a large
number of cores. We addressed this question by looking at the

Figure 4. Deviation in the free energy, separated into contributions from each pair of adjacent λ values (windows). The free energy for each window
describes the free energy change for the nonphysical transformation from λi to λf. Each point represents the deviation in this value calculated from
pmemd and sander, averaged over five independent calculations. Error bars represent the propagation of the standard deviation of the free energies
calculated from independent simulations (eq 12). The production stage for each window was simulated for 5 ns.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400340s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXF

algorithmic efficiency and relative speed for a single λ window
run using different numbers of cores. Specifically, we examined
the λ = 0.5 window from the bound state relative binding
energy calculation.
As shown in Figure 6, the algorithmic efficiency is stable over

a large number of core counts, indicating that it is independent
of the number of cores. For very large core counts, the speed of
the reciprocal sum becomes a limiting factor, causing a small
decrease in the algorithmic efficiency for pmemd compared to
sander. In the original implementation in sander, the reciprocal
sum is calculated for each end state in parallel, using half of the
total number of cores. In the new implementation in pmemd,
the reciprocal sum is calculated for the end states sequentially,
using the total number of cores. This is not as efficient for very
large core counts but is a limitation that arises from the current
structure of the parallel code in pmemd. However, the relative
speed jumps from three to five times and the absolute speed for
pmemd increases more rapidly than sander, indicating that an
alchemical transformation simulated using pmemd will use
fewer computational resources over a large range of core
counts.

These results were determined using the bound state relative
binding energy calculation. Similar results would be expected
with all of the model systems that include a protein. For the
smaller model systems where the ligands were in water, the
scaling is not expected to be as efficient due to the small total
number of atoms. However, even at low core counts, these
systems already run much faster than the larger systems, so
additional scaling would not be particularly beneficial for
calculating free energies.

Figure 5. Algorithmic efficiency and relative speed for the model
systems. (a) Algorithmic efficiency of the calculation for the model
systems using the original sander and new pmemd implementations.
(b) Relative speed, which describes how much faster the free energy
calculation was using the pmemd implementation.

Figure 6. Scaling for the λ = 0.5 point taken from the bound state of
the relative binding energy model system. (a) Algorithmic efficiency
for the original sander and new pmemd implementations as the number
of cores is varied. (b) Relative speed using pmemd over sander for the
same calculation at different core counts. (c) Absolute speed of the
same calculation in nanoseconds per day at different core counts. Each
simulation was run for 100 ps.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400340s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXG

4. CONCLUSIONS
An efficient method for alchemical transformation calculations
has been implemented into the pmemd module of Amber.20

This implementation produces results that are equivalent to
those from the original sander program. We show the majority
of the improvement in the calculation speed is due to
improvements in algorithmic efficiency from the new
implementation in pmemd. The new implementation can run
softcore calculations at λ = 0 and λ = 1, facilitating direct
calculation of free energies without needing to extrapolate the
energy at the end states. The interface is very similar to the
sander program, and only a few changes are needed in the
Amber input files.
The improvements in the algorithmic efficiency and relative

speed for alchemical free energy calculations will appeal to
many users of Amber. These improvements make more
efficient use of computer time and provide a guide for further
improvements in the implementation of free energy calcu-
lations. Future work will focus on enabling the use of Graphics
Processing Units (GPUs)24−26 to accelerate alchemical free
energy calculations, based on this work in pmemd. Our new
implementation is planned to be released publicly as part of the
next version of the Amber software.

■ ASSOCIATED CONTENT
*S Supporting Information
Assignment of parameter types for ligands, procedure used to
generate the input files for the model systems, and calculated
free energies for the model systems. This material is available
free of charge via the Internet at http://pubs.acs.org/.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: jkaus@ucsd.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Tom Steinbrecher and Mehrnoosh Arrar for
useful discussions. Joseph Kaus is supported in part by the
Molecular Biophysical Training Grant from the National
Institutes of Health (NIH). Additional support is provided by
the NIH, National Science Foundation (NSF), Howard
Hughes Medical Institute (HHMI), Center for Theoretical
Biological Physics (CTBP), and National Biomedical Compu-
tation Resource (NBCR). Ross Walker and Levi Pierce
acknowledge funding from the National Science Foundation
through the Scientific Software Innovations Institutes program
NSF SI2-SSE (NSF1047875 and NSF1148276) grants to Ross
Walker. Ross Walker additionally acknowledges funding
through the NSF XSEDE program and through a fellowship
from NVIDIA Inc. Computer time was provided by the San
Diego Supercomputer Center under XSEDE award TG-
CHE130010 to Ross Walker.

■ REFERENCES
(1) Tembe, B.; McCammon, J. A. Comp. Chem. 1984, 8, 281−283.
(2) Steinbrecher, T.; Labahn, A. Curr. Med. Chem. 2010, 17, 767−
785.
(3) Jorgensen, W. L. Science 2004, 303, 1813−1818.
(4) Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.;
Sherman, W. J. Chem. Theory Comput. 2010, 6, 1509−1519.

(5) Wong, C. F.; McCammon, J. A. Isr. J. Chem. 1986, 27, 211−215.
(6) Kollman, P. Chem. Rev. 1993, 93, 2395−2417.
(7) Espinoza-Fonseca, L. M. Biochemistry 2009, 48, 11332−11334.
(8) Ytreberg, F. M.; Swendsen, R. H.; Zuckerman, D. M. J. Chem.
Phys. 2006, 125, 184114.
(9) Mobley, D. L.; Dill, K. A. Structure 2009, 17, 489−498.
(10) Wereszczynski, J.; McCammon, J. A. Q. Rev. Biophys. 2012, 45,
1−25.
(11) Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T.
E. J. Mol. Biol. 1982, 161, 269−288.
(12) Srinivasan, J.; Cheatham, T. E., III; Cieplak, P.; Kollman, P. A.;
Case, D. A. J. Am. Chem. Soc. 1998, 120, 9401−9409.
(13) Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.;
Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak,
P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., III Acc. Chem. Res.
2000, 33, 889−897.
(14) Kirkwood, J. G. J. Chem. Phys. 1935, 3, 300−313.
(15) Genheden, S.; Nilsson, I.; Ryde, U. J. Chem. Inf. Model. 2011, 51,
947−958.
(16) Shirts, M. R.; Chodera, J. D. J. Chem. Phys. 2008, 129, 124105.
(17) Shirts, M. R.; Pande, V. S. J. Chem. Phys. 2005, 122, 144107.
(18) Bruckner, S.; Boresch, S. J. Comput. Chem. 2011, 32, 1303−
1319.
(19) Bruckner, S.; Boresch, S. J. Comput. Chem. 2011, 32, 1320−
1333.
(20) Case, D. A.; Darden, T. A.; Cheatham III, T. E.; Simmerling, C.
L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K.
M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Götz, A.
W.; Kolossvaŕy, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wolf, R. M.;
Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye,
X.; Wang, J.; Hsieh, M. J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin,
M. G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov,
S.; Kovalenko, A.; Kollman, P. A. Amber 12; University of California,
San Francisco: San Francisco, CA, 2012.
(21) Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.;
Cheatham, T. E., III; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P.
Comput. Phys. Commun. 1995, 91, 1−41.
(22) Case, D. A.; Cheatham, T. E., III; Darden, T.; Gohlke, H.; Luo,
R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J.
J. Comput. Chem. 2005, 26, 1668−1688.
(23) Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. WIREs Comput.
Mol. Sci. 2012, 3, 198−210.
(24) Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Grand, S. L.;
Walker, R. C. J. Chem. Theory Comput. 2012, 8, 1542−1555.
(25) Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Grand, S. L.;
Walker, R. C. J. Chem. Theory Comput. 2013, accepted.
(26) Grand, S. L.; Götz, A. W.; Walker, R. C. Comput. Phys. Commun.
2013, 184, 374−380.
(27) Paliwal, H.; Shirts, M. R. J. Chem. Theory Comput. 2011, 7,
4115−4134.
(28) Tan, Z.; Gallicchio, E.; Lapelosa, M.; Levy, R. M. J. Chem. Phys.
2012, 136, 144102.
(29) Shirts, M. R.; Pande, V. S. J. Chem. Phys. 2005, 122, 134508.
(30) Steinbrecher, T.; Joung, I.; Case, D. A. J. Comput. Chem. 2011,
32, 3253−3263.
(31) Steinbrecher, T.; Mobley, D. L.; Case, D. A. J. Chem. Phys. 2007,
127, 214108.
(32) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem.
Theory Comput. 2008, 4, 435−447.
(33) Pearlman, D. J. Phys. Chem. 1994, 98, 1487−1493.
(34) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.;
Simmerling, C. Proteins 2006, 65, 712−725.
(35) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis,
J. L.; Dror, R. O.; Shaw, D. E. Proteins 2010, 78, 1950−1958.
(36) Jorgensen, W. L.; Chandrasekhar, J.; Madura1, J. D.; Impey, R.
W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.
(37) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. J. Comput. Chem. 2004, 25, 1157−1174.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400340s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXH

http://pubs.acs.org/
mailto:jkaus@ucsd.edu

(38) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K.
M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.;
Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179−5197.
(39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery,; Jr.,; A., J.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J.
B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.
E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J.
J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,
W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian,
Inc.: Wallingford, CT, 2004.
(40) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,
10089−10092.
(41) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys.
1977, 23, 327−341.
(42) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952−
962.
(43) Pastora, R. W.; Brooks, B. R.; Szaboc, A. Mol. Phys. 1988, 65,
1409−1419.
(44) Loncharich, R. J.; Brooks, B. R.; Pastor, R. W. Biopolymers 1992,
32, 523−535.
(45) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684−3690.
(46) Frishman, D.; Argos, P. Proteins: Struct., Funct., Genet. 1995, 23,
566−579.
(47) Stone, J. An Efficient Library for Parallel Ray Tracing and
Animation. M.Sc. thesis, Computer Science Department, University of
Missouri-Rolla, Rolla, MO, 1998.
(48) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996,
14, 33−38.
(49) Martin, J. L.; Begun, J.; McLeish, M. J.; Caine, J. M.; Grunewald,
G. L. Structure 2001, 9, 977−985.
(50) Nair, P. C.; Malde, A. K.; Mark, A. E. J. Chem. Theory Comput.
2011, 7, 1458−1468.
(51) Riniker, S.; Christ, C. D.; Hansen, N.; Mark, A. E.; Nair, P. C.;
van Gunsteren, W. F. J. Chem. Phys. 2011, 135, 024105.
(52) Gordon, J. C.; Myers, J. B.; Folta, T.; Shoja, V.; Heath, L. S.;
Onufriev, A. Nucleic Acids Res. 2005, 33, W368−W371.
(53) Myers, J.; Grothaus, G.; Narayanan, S.; Onufriev, A. Proteins
2006, 63, 928−938.
(54) Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V. Nucleic Acids
Res. 2012, 40, W537−W541.
(55) Russell, R. J.; Haire1, L. F.; Stevens, D. J.; Collins, P. J.; Lin, Y.
P.; Blackburn, G. M.; Hay, A. J.; Gamblin, S. J.; Skehel1, J. J. Nature
2006, 443, 45−49.
(56) Lawrenz, M.; Baron, R.; McCammon, J. A. J. Chem. Theory
Comput. 2009, 5, 1106−1116.
(57) Amaro, R. E.; Swift, R. V.; Votapka, L.; Li, W. W.; Walker, R. C.;
Bush, R. M. Nat. Commun. 2011, 2, 388.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400340s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXI

