
Routine Microsecond Molecular Dynamics Simulations with AMBER
on GPUs. 2. Explicit Solvent Particle Mesh Ewald
Romelia Salomon-Ferrer,† Andreas W. Götz,† Duncan Poole,‡ Scott Le Grand,‡,∥ and Ross C. Walker*,†,§

†San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive MC0505, La Jolla, California 92093,
United States
‡NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, California 95050, United States
§Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive MC0505, La Jolla, California
92093, United States

*S Supporting Information

ABSTRACT: We present an implementation of explicit solvent all atom classical molecular
dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled
GPUs. First released publicly in April 2010 as part of version 11 of the AMBER MD package and
further improved and optimized over the last two years, this implementation supports the three
most widely used statistical mechanical ensembles (NVE, NVT, and NPT), uses particle mesh
Ewald (PME) for the long-range electrostatics, and runs entirely on CUDA-enabled NVIDIA
graphics processing units (GPUs), providing results that are statistically indistinguishable from
the traditional CPU version of the software and with performance that exceeds that achievable
by the CPU version of AMBER software running on all conventional CPU-based clusters and
supercomputers. We briefly discuss three different precision models developed specifically for this work (SPDP, SPFP, and
DPDP) and highlight the technical details of the approach as it extends beyond previously reported work [Götz et al., J. Chem.
Theory Comput. 2012, DOI: 10.1021/ct200909j; Le Grand et al., Comp. Phys. Comm. 2013, DOI: 10.1016/j.cpc.2012.09.022].We
highlight the substantial improvements in performance that are seen over traditional CPU-only machines and provide validation
of our implementation and precision models. We also provide evidence supporting our decision to deprecate the previously
described fully single precision (SPSP) model from the latest release of the AMBER software package.

1. INTRODUCTION

Classical molecular dynamics (MD) has been extensively used
in atomistic studies of biological and chemical phenomena
including the study of biological ensembles of proteins, amino
acids, lipid bilayers, and carbohydrates.1−13 With the develop-
ment of new algorithms and the emergence of new hardware
platforms, MD simulations have dramatically increased in size,
complexity, and simulation length. In particular, graphics
processing units (GPUs) have emerged as an economical and
powerful alternative to traditional CPUs for scientific
computation.14−17 GPUs are present in most modern high-
end desktops and are now appearing in the latest generation of
supercomputers. When programmed correctly, software run-
ning on GPUs can significantly outperform that running on
CPUs. This is due to a combination of high computational
power, in terms of peak floating point operations, and high
memory bandwidth. This combination makes GPUs an ideal
platform for mathematically intense algorithms that can be
expressed in a highly parallel way. On the downside, the
inherent parallel nature of the GPU architecture necessitates a
decrease in flexibility and an increase in programming
complexity in comparison to CPUs.
The success and high demand for GPUs in the gaming and

3D image rendering industries has fueled the sustained
development of GPUs for over two decades leading to
extremely cost-effective hardware for scientific computations.

The first GPU with features specifically targeted for scientific
computation was released by NVIDIA in 2007 with a
subsequent generation following a year later that provided
the first support for double precision floating point arithmetic.
At the time of writing, NVIDIA’s latest generation of GPUs are
based on the Kepler GK104 and GK110 chips. These two chip
designs, similar to earlier models, provide very different ratios
for single vs double precision performance. The GK104 is
targeted at algorithms that rely extensively on single precision,
while the GK110 offers more extensive double precision
performance. As discussed later, it is necessary to carefully tune
the use of single and double precision floating point and
ultimately fixed precision arithmetic to achieve high perform-
ance across these different hardware designs while not
compromising the integrity of the underlying mathematics.
There are a large number of scientific software packages that

have been successfully ported to run on GPUs.12,13,18 In the
molecular dynamics field there have been attempts to port
major MD packages to GPUs. For a review of the progress, the
reader is referred to the review article in ref 12. A number of
widely used MD packages designed for the simulation of
condensed phase biological systems exist that feature varying
degrees of GPU support including NAMD,19,20 AMBER,21,22

Received: April 17, 2013

Article

pubs.acs.org/JCTC

© XXXX American Chemical Society A dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

pubs.acs.org/JCTC

GROMACS,23,24 LAMMPS,25 CHARMM,26 aceMD,27 and
openMM.28 Of these, one of the most widely used is the
Assisted Model Building with Energy Refinement (AMBER)
package, the latest version of which (v12) was released in April
2012 with comprehensive support for GPU-accelerated MD
using NVIDIA graphics cards.21,22 For a recent review of the
methodology supported in the latest version of AMBER, the
reader is directed to the review article in ref 22.
Part 1 of this paper29 presented our AMBER GPU

implementation of Generalized Born implicit solvent MD
including details of the precision models used for floating point
operations, calculation of covalent terms, SHAKE constraints,
and the direct space sum. In this paper, we extend the previous
work describing our complete implementation of explicit
solvent MD using the PME approach to long-range electro-
statics where the entire calculation is conducted on GPUs. In a
condensed phase MD simulation, nonbonded interactions are
the most numerous contributions to the force and energy with
a formal O(N2) scaling. The calculation of these interactions is
thus usually the bottleneck. To reduce the computational cost,
the contributions of long-range interactions are usually
approximated by schemes with more favorable scaling. Many
methods have been devised for this purpose, most involving the
use of a cutoff in which nonbonded interactions are only
explicitly accounted for within the cutoff. This approximation
plus a long-range correction term is usually used for van der
Waals interactions (vdW).30 Coulomb terms are poorly
described by this method. These interactions decay very slowly
and are not typically convergent with the summation of a finite
length. The use of electrostatic cutoffs can also introduce
undesirable effects including lack of energy conservation due to
abrupt truncations. Approaches to account for contributions
beyond the cutoff include the reaction field method,31 isotropic
periodic sum method,32 and a number of lattice sum methods.
The lattice sum methods are the most widely used in
condensed matter biomolecular simulations and include the
particle mesh Ewald (PME) method,33 smooth particle mesh
Ewald (SPME) method,34 and particle−particle−particle mesh
(P3M)35 method. PME is the method that has been used in
AMBER simulations and is the approach we have implemented
here.
Support for explicit solvent PME calculations on GPUs was

first released publicly with AMBER v11 in April 2010. Version
11 was based on the work described here was initially
developed to support the most commonly used features of
the AMBER MD engine pmemd. The latest version of AMBER
(v12) includes not only significant additions to the GPU
supported features of pmemd but also introduces a completely
new precision model SPFP36 as discussed later. This uses fixed
point integer arithmetic in place of double precision floating
point accumulations to achieve a significant performance boost
and memory footprint reduction on the latest generation
hardware (GK104) at no cost to accuracy.36 In Section 2, we
present the PME theory as required for a discussion of the
technical details of the GPU implementation in AMBER in
Section 3. Sections 4 and 5 contain a comprehensive series of
simulation results addressing the performance and validation of
the code, respectively. Concluding remarks are contained in
Section 6.

2. THEORY
In classical MD simulations, the majority of the computational
effort is spent evaluating the gradient of the potential energy

with respect to the coordinates of a given configuration of
atoms that has to be repeated for each time step of the
simulation. In the case of the AMBER pairwise additive force
fields,37 the potential takes the form

∑ ∑

∑ ∑

∑ ∑

θ θ

ϕ γ

πε

= − + −

+ + −

+ ′ − + ′
< <

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

V b r r a

V n

A

r

B

r

q q

r

() ()

(/2)[1 cos()]

4

i

n

i i i
i

n

i i i

i

n

n

n

i n i i n

i j

n
ij

ij

ij

ij i j

n
i j

ij

AMBER ,eq
2

,eq
2

, ,

12 6
0

i

bonds angles

dihedral ,max

atoms atoms

(1)

where the bond and angle terms are represented by a simple
harmonic expression with force constants bi and ai and
equilibrium bond distances/angles ri,eq and θi,eq, respectively.
Torsional potentials for the dihedral angles are represented
using a truncated Fourier expansion in which the individual
terms have a potential Vi,n with periodicity n and phase shift γi,n.
The last two terms are the vdW interaction represented by a
Lennard−Jones potential with diatomic parameters Aij and Bij
and the electrostatic interaction between atom-centered point
charges qi and qj separated by the distance rij. The prime on the
summation of the nonbonded interactions indicates that vdW
and electrostatic interactions are only calculated for atoms in
different molecules or for atoms in the same molecule separated
by at least three bonds. Those nonbonded interactions
separated by exactly three bonds are reduced by the application
of a scale factor that is dependent on the specific version of the
force field (2.0 and 1.2, for vdW and electrostatic, respectively,
for the ff99SB38 version of the AMBER force field).
For explicit solvent calculations, the use of periodic boundary

conditions is commonly used to avoid finite size artifacts.

∑ ∑= ′ −
<

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟V

A

r

B

ri j

n
ij

ij

ij

ijn n n
vdW

,
12

,
6

atoms

(2)

∑ ∑
πε

= ′
<

V
q q

r4i j

n
i j

ijn n
Coulomb

0 ,

atoms

(3)

where n, corresponds to the index of the periodic copy of the
system. For instance, for a cubic box, the image cells will be
located at nL, where n = (n1x ̂,n2y,̂n3z)̂ is the cell coordinate
vector, and L is the box size length. From eq 3, it is clear that
for large and periodic systems, the number of nonbonded terms
grows rapidly and quickly becomes a bottleneck for the
calculation. van der Waals terms decay rapidly with particle
separation, thus the use of a simple cutoff plus a correcting
term30 is in most cases sufficient. For the Coulomb interactions,
however, this approach leads to large errors in the integration
of the equations of motion and is therefore not used. The
particle mesh Ewald (PME) method33 offers a solution to this
problem by recasting the slowly converging Coulomb term in
terms of three fast converging terms: direct sum, reciprocal sum
and self-interaction correction.

∑ ∑
πε

= ′ = + +
<

V
q q

r
V V V

4i j

n
i j

ijn n
Coulomb

0 ,
direct reciprocal self

atoms

(4)

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXB

For the direct sum, the summation of interparticle point
charge interactions is substituted by a sum of point charges
screened by Gaussian charge distributions of the same
magnitude but opposite sign centered at the positions of each
particle. This charge distribution modifies the strength of the
interaction, guaranteeing it decays rapidly. This allows the use
of a relatively small direct space cutoff radius (typically 8−12
Å) leading to a net reduction in computational effort.

∑ ∑
α

= ′V q q
r

r
1
2

erfc()

i j

n

i j
ij

ijn

n

n
direct

,

,

,

atoms

(5)

where qi and qj are the charges of particles i and j, and rij,n is the
distance between them. erfc(x) is the complementary error
function, erfc(x) = 1 −erf(x), and α is the Ewald parameter,
which determines how strongly the charge is screened. To
compensate for the extra charge density introduced, a sum of
Gaussian charge distributions is placed in the position of the
point charges, with the same magnitude and sign, and solved
for with a grid representation of this periodic charge
distribution, termed the reciprocal sum. This periodic
distribution charge field is easily decomposed mathematically
into a Fourier series in the reciprocal space, which converges
faster than the summation over the explicit charges that
generated it.

∑
π

π α
=

−
−

≠

V
v

S S
m

m
m m

1
2

exp((/))
() ()reciprocal

m 0

2

2
(6)

where v is the volume of the unit cell, and m is a reciprocal-
lattice vector. S(m) is the structure factor, defined as

∑ π= ′ ×
=

S q i rm m() exp(2)
i

n

i i
1

atoms

(7)

S(m) can also be approximated by

∑ π≃ +

+

=

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟

S Q k k k i
m k

K
m k

K

m k
K

F Q m m m

m() (, ,)exp 2

()(, ,)

k k k, ,
1 2 3

1 1

1

2 2

2

3 3

3

1 2 3

1 2 3

(8)

where Q is the charge matrix built from the interpolation of the
point charges to a 3D grid of the same dimensions of the
simulation cell, k1,k2,k3. This expression can be written as a
convolution in the reciprocal space. F(Q) is the fast Fourier
transform (FFT) of Q, used to solve this equation in NlogN
time. Because this method scales as NlogN, it is a clear
improvement over the scaling of the original Coulomb problem
(N2). The final term in the Ewald sum recast of the Coulomb
potential, (Vself), accounts for a correction term which removes
the self-interactions arising from the charges introduced by the
reciprocal term.

∑α
π

= − ′
=

V q
i

n

iself
1

2
atoms

(9)

The direct space and correction term energy can be directly
obtained as written above; the contribution from the reciprocal
space is obtained from

∑
π

π α
=

−

−
≠

V
v

F Q F Q
m

m
m

m

1
2

exp((/))
()() ()

()

reciprocal
m 0

2

2

(10)

The contributions from the reciprocal space term to each
particle is interpolated back using the same functional form
used to generate the charge grid. The force is obtained by
analytical differentiation of the three terms in the Coulomb
energy.

3. TECHNICAL DETAILS OF THE IMPLEMENTATION

There are only a few papers that deal with GPU acceleration of
particle mesh Ewald-based methods for biosimulations. Harvey
and De Fabritis39 and Brown, et.al.40 have published GPU
implementations of SPME as part of aceMD27 and P3M as part
of LAMMPS,41 respectively. OpenMM42,43 also supports PME
and by extension GROMACS23,24 and CHARMM,26 which
interfaces to OpenMM for GPU accelerated calculations.
NAMD supports GPU-accelerated explicit solvent MD
simulations; however, the PME part of the calculation is
performed on the CPU, while only the direct space sum is
handled by the GPUs.20 Here, we present a complete explicit
solvent MD implementation based on the particle mesh Ewald
method (PME) in AMBER, first released in 2010 within
AMBER v11. We present the details involved in the calculation
of all the energy terms in the sums presented above, with
special emphasis on the terms concerning the electrostatic
interactions estimated with PME and those that have changed
since part 1 of this manuscript was published.29

We would like to make it clear that the primary goal of this
work was to port the exact equations as they are described in
AMBER’s CPU code. For this reason, we have deliberately not
made any additions or included any further approximations,
beyond the use of different precision models (discussed in the
next section), in porting the code to the GPU.

3.1. Precision Model. Since the publication of our previous
work that covered the details of the implementation of the
Generalized Born method for implicit solvent on GPUs,29 our
approach has undergone some important changes relative to
the use of varying numerical precision. As a result of our
previous work, important concerns were raised about the
accuracy of the pure single precision (SPSP) model in which all
the operations and accumulations of energy terms and forces
were performed with single precision variables. This led us to
initially develop a hybrid precision model termed SPDP.
However, the massive reduction in double precision perform-
ance in the NVIDIA Kepler I (GK104) series of GPUs meant
we had to rethink the need for double precision floating point
variables. As a result, AMBER v12 now includes a new precision
model, SPFP, which combines single precision with 64-bit fixed
point arithmetic in place of double precision arithmetic to
exploit the new generation of GPU hardware without affecting
performance of previous generation hardware.36 Presently
AMBER includes three different precision models: (1) the
SPFP (default) model addressed above, (2) the historical SPDP
that uses single precision floating point variables for everything
except the bonded terms and the accumulation of forces that
are calculated in double precision arithmetic, and (3) the
reference DPDP model in which double precision arithmetic is
used throughout the code.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXC

The use of 64-bit fixed point precision has been covered in
detail in a previous paper,36 so we include here only a short
description of the main concept behind it. Briefly with the
SPFP model, the relative precision of a number x expressed as a
floating point value fln(x) with n significant bits is given as

−
< −x x

x
fl ()

2n n

(11)

The relative precision for an IEEE754 double precision
number with 53 significant bits including a hidden bit is of
≈10−16. Typical MD simulations do not require this level of
precision. For this, we assert that fixed point 64-bit integer
representations Qm.f with an appropriate choice of magnitude
bits m and fractional bits f can be used instead.
AMBER’s SPFP precision model replaces all the double

precision force accumulators with Q24.40 fixed point integer
variables. This definition of accumulators provides 7 significant
figures to the left of the radix point and 12 to the right. Given
that the forces typically never exceed numerical values of 100.0
in internal units, this should be enough range for typical stable
MD simulations. Energy and virial accumulation on the other
hand are carried out using Q34.30 fixed point integers. The
reason for this is that while forces are vectors of length 3 ×
Natom, where Natom is the number of atoms, the energy and virial
are scalars with only a single accumulator. This means that, as
the system grows, the values for these variables could easily
overflow a Q24.40 accumulator. Energies usually do not affect
the trajectory and are typically only written to 4 decimal places,
and thus, we use Q34.30 FP arithmetic, which provides
approximately 10 significant figures to the left of the radix point
and 9 to the right.
The SPFP precision model also makes extensive use of

integer atomic operations to perform accumulations. Integer
atomic operations have improved in performance significantly
since the days of the tesla (C2050) GPUs. The Fermi chips
improved this a small amount, and then Kepler improved it
dramatically. On Fermi, the atomic operation code is actually
slower than the original SPDP implementation, but the
difference is compensated for with performance improvements
in other parts of the code. With Kepler, the atomic operations
are sufficiently fast that the simple implementation of summing
into fixed precision is just as quick as using the SPDP approach.
Because SPFP is now the default model and SPDP/DPDP

are reserved for regression testing, the description of each
energy term will be focused on the SPFP approach. An
extensive description of most energy terms for the SPDP and
DPDP models is presented in our previous paper.29 A detailed
description of the algorithms involved in PME and neighbor
list, valid for all precision models, is presented here.
3.2. Nonbonded Interactions. The present implementa-

tion of AMBER has evolved from the one presented in our
previous work.29 In the initial implementation, a careful use of
output buffers allowed the accumulation of the contributions
from nonbonded interactions without the risk of race
conditions and the benefit of maintaining determinism in the
accumulators. However, the release of NVIDIA’s GK104
(Kepler I) series of GPUs (e.g., K10/GTX6XX) brought
poor DP performance, making it beneficial to evaluate
alternatives including integer atomics. The efficient use of
atomic functions has significantly reduced the memory
requirements of the code (Table 2) compared with that
needed by the original SPDP precision model because it

negates the need for the accumulation buffers and at the same
time improves performance on Kepler hardware, which has
approximately 3× faster integer atomics.

3.3. Particle Mesh Ewald. Direct Sum and Neighbor List.
The contributions for the direct space sum are accounted for in
the same way as nonbonded interactions in the implicit solvent
implementation described in ref 29 with the exception that
interactions are only calculated for pairs of atoms separated by
less than a cutoff and the electrostatic interaction is modulated
by erfc as described in eq 5. The interactions included in the N′
of the summation in eq 5 are obtained from a neighbor list that
is updated heuristically based on a buffer region as used in most
CPU MD codes. Calculation of the neighbors in the GPU
version of PME is conducted in parallel on the GPU. The
neighbor list is constructed in a single phase that combines two
sorting mechanisms. The atoms are primarily sorted spatially
into boxes of at least the nonbond cutoff plus the skin buffer
(extended cutof f) in each dimension.The box ID to which each
particle belongs is stored in the highest order bits of the sorting
key. The number of bits used here is determined dynamically
based on the number of nonbond boxes in the calculation. The
next 6 bits encode a 4 × 4 × 4 Hilbert curve44 to improve the
spatial locality of adjacent atoms (Figure 1), giving a series of
sorting keys for each atom.

For each box, we generate a Hilbert curve that assigns atom
IDs for atoms in the box that gives good spatial locality. Each
ID corresponds to the Hilbert curve coordinates calculated
from a lookup table (Table 1). This ID is stored in the low 6
bits, as mentioned before, 2 bits for each of the 3 intercellular
coordinates. These sorting keys are then used to sort the atom
list. We then go through in a single pass in groups of either 16
or 32 (based on GPU specifications and cutoff size) and find all
other atoms within the extended cutof f of them restricting this to
atoms in adjacent boxes on the leading edge, giving interactions
with 13 adjacent boxes and itself. Atoms closer than
(extendedcutof f)2 are added to the neighbor list. The direct
space sum then just involves iterations over the neighbor list in
a parallel fashion in sizes of a warp.
An optimization of the neighbor list build that may be

included in future versions of the code as described earlier is to
use a bit-mask based on the Hilbert ID to exclude certain atoms
from the R2 calculations.
Both electrostatic and vdW contributions are calculated

explicitly inside the kernel; no lookup tables are used. For vdW
interactions, the individual atom type based parameters are
extracted from the combined table in the topology file and then
stored as atom type parameters and combined in the kernel as
needed. A mask is applied to the calculation of the direct space
sum to skip the calculations of 1−2, 1−3, 1−4 interactions and

Figure 1. Determination of the neighbor list based on a Hilbert curve,
second order H2 curve shown here, for a periodic system.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXD

any other interaction that may be listed as excluded in the
topology file.
Reciprocal Sum. The implementation of the reciprocal sum

entails five principal steps: (1) charge spreading onto a charge
grid Q, (2) 3D fast Fourier transform (FFT) of Q from real to
complex, (3) energy computation in reciprocal space, (4) 3D
fast Fourier transform (FFT) of the convolution from complex
to real, and (5) per atom force term computation in real space.
Of all these steps, the most complex part is building the

charge grid. This includes projecting each charge onto the
corners of the grid box in which it resides. Clearly, this is a
prime candidate for race conditions in parallel. Formerly, this
was avoided by using a complex series of up to 27 accumulation
buffers for each grid point laid out in a repeating 2 × 2 × 2 to 3
× 3 × 3 cuboid lattice matched to the nonbond cells. In the
latest version of AMBER, the charge grid is now built using
atomic accumulations which avoids this complexity.
All fast Fourier transforms are performed using the CUFFT

library45 included in CUDA on GPU 0 in the case of multi-
GPU runs. CUFFT offers the possibility to use single or double
precision. The precision used for each model matches the SP or
DP of the precision mode prefix, namely, SP for SPFP and
SPDP and DP for the DPDP model. 3D transforms are used in
all cases.
Energy contributions per atom are calculated as in equation

eq 10, one thread per particle. The calculation of the forces are
performed by analytical differentiation as described in Section
2, one grid point per thread. Force contributions to each atom
are projected out from the grid points in a similar, but inverse,
fashion as the charges.
3.4. Bonded and 1−4 Interactions. Bonded and 1−4

interactions are less numerous than the nonbonding
interactions but of crucial importance to the evolution of the
calculation. In order to exploit the massive parallelism of the
GPUs, these interactions are placed in a list ordered by type
(bond, angle, dihedral, etc.) and directly divided up across SMs,
assigning one task per thread. To avoid race conditions from

terms involving one or more coincident atoms, atomic
operations are used in the force accumulation. Atomic
operations are also used in the accumulation of the energy
and virial terms when necessary. Scaled 1−4 electrostatic and
vdW interactions are calculated entirely in the same kernel. The
reason for explicitly excluding 1−2, 1−3, and 1−4 interactions
in the nonbond calculation and then calculating scaled 1−4s
along with the dihedral terms rather than calculating them twice
and subtracting the difference, which could potentially give
slightly better performance, is to avoid the potential loss of
precision in the forces that can occur with this approach.

3.5. Harmonic Restraints. Harmonic restraints are ex-
pressed in a similar fashion as a bonded interaction between an
atom and a fixed virtual particle representing the reference
structure. Calculations of the restraint force is handled as part
of the bond calculation.

3.6. SHAKE Algorithm. In the present implementation in
line with the most common mode of operation used in AMBER
simulations, the SHAKE algorithm46 is only applied to
hydrogen atoms. In the implementation, each heavy atom is
sorted by the number of attached hydrogen atoms and treated
on a different thread. This gives enough parallelism to the
algorithm and ensures efficient execution across card thread
counts. The SHAKE calculations, to avoid issues associated
with taking the small difference of two large numbers, is carried
out entirely in double precision. The performance impact of
this is minimal given the shake calculation is a very small part of
the overall calculation.

3.7. Coordinate Update. The time integration of the
trajectory is performed entirely on the GPU to avoid the costly
transfer of information between CPU and GPU memory. Each
atom is treated independently on a separate thread due to the
intrinsic parallel nature of this step of an MD simulation.

3.8. Thermostats. For MD simulations using the Anderson
thermostat or the Langevin thermostat it is necessary for the
random number generator (RNG) to also be perfectly
deterministic in order for any two initially identical simulations
to be reproducible. To this end, we use a parallelized version of
the Mersenne Twister RNG as implemented in the CURAND
library that is available with the CUDA Toolkits since version
3.2.
Currently, the Berendsen, Anderson, and Langevin thermo-

stats are supported. The thermostat is applied after the
coordinate update and similarly takes place entirely on the
GPU using one thread per particle to avoid the costly transfer
of information to the CPU.

3.9. Barostats. PMEMD currently supports the Berendsen
barostat, although the Anderson and Nose−Hoover Lagevin
barostats have been implemented in a development version of
the software for the use with lipid bilayer simulations and
scheduled for release with the next major version update. With
the Berendsen barostat, the xx, yy, and zz components of the
virial tensor are accumulated in fixed precision (to maintain
determinancy) using atomic operations at the time of the force
calculations. Pressure scaling then takes place entirely on the
GPU on a molecule by molecule basis within a series of
pressure scaling kernels called as part of the coordinate update.
Solvent molecules, which typically massively outnumber solute
molecules, are compressed to a single kernel and calculated
using one thread per molecule. The solute typically contains
hundreds to thousands of atoms per molecule. Calculations
proceed by first padding the atoms of each molecule to warp
fragments (typically 32). A warp then passes through the atoms

Table 1. Cell Hash Lookup Table (4 × 4 × 4)

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXE

of each molecule accumulating molecular virials and center of
mass data depending on the kernel. When a new molecule is
reached, the kernel dumps all accumulated data to the
appropriate molecule’s accumulators in an atomic fashion.
3.10. Parallelization Across GPUs. As with the other MD

engines included in AMBER, the message passing interface
protocol (MPI)47 is used to run parallel simulations across
multiple GPUs in the same or interconnected nodes. At the
time of writing, all data structures are replicated on all available
GPUs; thus, the memory usage per GPU is roughly identical in
serial or parallel simulations. We expect this to improve in later
versions as we seek to exploit better communication between
GPUs and extensive direct memory copies using peer to peer
functionality.
The atoms are evenly distributed among all GPUs, and the

nonbond calculations internally load balance these static
allocations between SMs within each GPU. Standard MPI
reductions are used to globally sum the forces, and then all
coordinates are updated on each GPU. The deterministic
nature of our SPFP precision model means that it is not
necessary to communicate updated coordinates across GPUs,
which otherwise would be needed to deal with rounding
differences during the integration. While a serial GPU
bottleneck, the time step integration is <1% of the total
iteration, and so the typical GPU count of 2 to 16 is not critical
to performance.
For the PME calculation, the FFT calculation and charge grid

interpolation are carried out on GPU 0 of node 0. Nonbond
cells are laid out across the GPUs proportionally. If the number
of nodes is ≤4, then node 0 is given a proportionally smaller
share of direct space. This works surprisingly well because the
nonbond calculation, as mentioned above, is already load
balanced automatically on each GPU. In the case of >4 GPUs,
then GPU 0 does only the reciprocal sum.
3.11. Features of Implementation. Supported Methods.

The GPU implementation of AMBER supports all of the main
features included in pmemd. At the time of writing, the
following major options are supported, among others (1)
pairwise additive AMBER and CHARMM force fields, (2) extra
points, (3) NMR restraints, (4) isotropic periodic sum (IPS),
particle mesh Ewald (PME), and Generalized Born (GB)
electrostatics models, (5) harmonic restraints, (6) shake on
hydrogen atoms, (7) temperature scaling, (8) pressure scaling,
and (9) execution in parallel across multiple GPUs, as well as a
number of advanced features including temperature replica
exchange molecular dynamics (REMD), accelerated molecular
dynamics (aMD),9 umbrella sampling, and simulated annealing.
The current development version of the software also

includes support for multidimensional Hamiltonian replica
exchange MD running over 1000 GPUs in parallel on the NSF
Blue Waters supercomputer. In the near future, we expect to
also add support for more advanced features such as constant
pH, thermodynamic integration, and self-guided Langevin
dynamics.
System Size. GPU memory and the MD simulation

parameters determine the maximum system size that can be
treated with the GPU implementation. The physical GPU
hardware itself, to some extent, affects memory usage because
the optimizations used are nonidentical for different GPU
types. With respect to MD simulation parameters, the Langevin
thermostat and the use of larger cutoffs for vdW and
electrostatics, as well as the use of virial dependent barostats
for NPT simulations, increase the memory requirements.

Table 2 gives an overview of the approximate maximum
atom counts that can be treated with the present version 12 of
the code on different GPU hardware.

At the time of writing, the memory usage per GPU in parallel
runs does not decrease with an increasing number of GPUs due
to the replicated data model currently in use.

4. PERFORMANCE
Serial GPU Performance. The present AMBER GPU

implementation supports three different precision models,
namely, SPDP, SPFP, and DPDP. The DPDP is a reference
model equivalent to the approach used on the CPU that uses
double precision throughout the code. Because of the design of
GPU hardware, the use of double precision can be detrimental
to the performance of the GPU implementation. Therefore, the
desire to achieve high performance prompts for the use of SP
where possible. As our previous work shows,29 it is critical to
use SP carefully in order to not negatively affect the accuracy of
the MD. We have shown that the use of SP exclusively
throughout the code can give rise to unpredictable artifacts in
the simulation and can therefore cause problems in structural
properties. For this reason, we designed our hybrid precision
SPFP model to achieve performance very close to that
achievable with pure SP models but in a manner that does
not impact accuracy. The precision model by default in
AMBER v12 is therefore the SPFP model. The results of the
simulation timings for single GPU runs using the three different
precision models available in AMBER v12 are summarized in
Table 3 along with the pure single precision (SPSP)
performance from AMBER v11.48 [New NVIDIA hardware
(Kepler series) is only supported by AMBER v12. AMBER v12
does not support SPSP and thus cannot be used in the
corresponding performance calculations.]. Even for small
simulations of 23,558 atoms, the serial GPU version of the
code is substantially faster (110.65 ns/day) on a single GPU
(GTX-TITAN) than using a state of the art CPU node. Using
all cores of one Dual × Oct Core Intel Sandy Bridge E5-2670
2.6 GHz node the CPU achieves a peak performance of 21.13
ns/day. As shown in Table 3, the performance of SPFP is far
greater (for the GTX680 and K10) than that for SPDP and
DPDP while the accuracy remains practically the same in all
three as discussed later. SPFP is never slower than SPDP and is
significantly faster for cards where double precision perform-
ance is much lower than the single precision performance.
Table 4 shows the performance of the SPFP implementation

Table 2. Approximate Maximum Atom Counts That Can Be
Treated with GPU Implementation of PME Explicit Solvent
Simulations in the Released Version of AMBER 12 Using the
DPDP, SPDP, and SPFP Precision Modelsa

GPU PME (max atoms)

type memory DPDP SPDP SPFP

GTX580 3.0 GB 870,000 1,060,000 1,240,000
Tesla M2090 6.0 GB 1,820,000 2,230,000 2,680,000
GTX680 2.0 GB 460,000 710,000 920,000
K10/GTX680 4.0 GB 1,270,000 1,520,000 1,810,000
K20X/GTX-TITAN 6.0 GB 1,890,000 2,270,000 2,710,000

aTest systems are cubic boxes of TIP3P water molecules (for details of
the simulations, see the Supporting Information). Error-correction
code (ECC) was switched off on the Tesla cards (M2090, K10,
K20X).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXF

for a single GPU card as a function of calculation size for a
range of commonly used GPUs.

Parallel GPU Performance. Table 5 shows AMBER
performance for parallel GPU runs with the SPFP precision
model and the traditional CPU implementation. A throughput
of up to 118.88 ns/day for DHFR, up to 33.84 ns/day for
Factor IX, and up to 7.56 ns/day for cellulose can be achieved
with four (≈ $500 each) NVIDIA GTX680 GPUs in a single
node, while 125.28, 38.05, and 8.72, correspondingly, are
obtainable with just 2 GTX-TITAN ($1000 each) in a single
node. This is more than a factor of 2 faster than the maximum
throughput that can be achieved on a typical supercomputer for
DHFR given that the CPU scaling plateaus at 58.19 ns/day
long before it reaches the performance achieved by the GPU
implementation. In the case of Factor IX, the CPU perform-
ance plateaus at 22.69 ns/day, less than two-thirds of the
observable single node GPU (2 GTX-TITAN) performance.
For cellulose, the maximum performance achieved by the CPU
code in our test is 5.92 ns/day, just two-thirds of the single
node GPU performance. The present implementation on a
single GPU (GTX-TITAN) is still faster than the CPU scaling
limit for all tests. Up to this point, we have focused on
optimizing single GPU performance in order to support the
broadest audience and maximize scientific impact. It should be
noted that unlike a number of competing codes our
implementation runs entirely on the GPU. As such, four
independent calculations can be run on a single workstation

containing four GPUs without any reduction of performance.
This was in part our motivation for not attempting to obtain
the very last bit of performance out of a node by also
attempting to use the CPU cores. Future GPU implementa-
tions of AMBER will also focus on optimizing algorithms to
enhance the multi-GPU performance. As mentioned in Section
3.10, we expect the parallel scaling of the GPU code to improve
dramatically in future versions with the use of new technology
such as direct GPU to GPU memory copies.

5. VALIDATION
With every new addition to a software package, regression tests
must be performed to ensure the latest additions do not affect
the outcome of all the previous supported capabilities of the
code. AMBER has a very extensive set of regression tests that
evaluate every major feature with different combinations of run
parameters to ensure the back compatibility of any release of
the code with previous versions. These tests aim to prevent the
introduction of any new bugs or critical logic errors. The
implementation of the full double precision version of the GPU
code matches the CPU code to machine precision and is thus
used to check for the correctness of the GPU code when using
the same regression tests.
For the GPU implementation, there is the need to validate

the hybrid precision models SPFP and SPDP as well. This is
significantly more complex because it requires a careful
evaluation of any subtle differences in the dynamics as well as

Table 3. Throughput Timings (ns/day) for AMBER PME
Simulations of DHFR (23,558 atoms) with a Time Step of 2
fs Using the Three Different Precision Models of the Serial
GPU Versiona

PME (DHFR)

GPU type SPSP SPFP SPDP DPDP

GTX580 58.00 54.80 53.00 10.00
M2090 49.40 46.60 46.20 16.20
K10 (1 GPU) NA 52.03 33.06 4.68
GTX680 NA 74.40 45.90 6.60
K20X NA 89.41 66.47 23.13
GTX-TITANb NA 110.65 69.85 10.78

aFor details on the simulations and the hardware and software stack,
see the Supporting Information. bRunning in “Gaming” mode.

Table 4. Throughput Timings (ns/day) for AMBER PME
Simulations of DHFR (23,558 atoms), Factor IX (90,906
atoms) and Cellulose (408,576 atoms) with a Time Step of 2
fs Using the Serial GPU Version with the SPFP Precision
Modela

DHFR Factor IX cellulose

GPU type (23,558 atoms) (90,906 atoms) (408,576 atoms)

C2075 36.89 10.62 2.18
M2090 46.60 13.28 2.67
GTX580 54.80 15.47 3.16
GTX680 74.40 22.65 4.36
K10 (1 GPU) 52.03 16.03 3.28
K20X 89.41 25.45 6.16
GTX-TITANb 110.65 31.55 7.69

aFor details of the simulations, see the Supporting Information.
bRunning in “Gaming” mode.

Table 5. Multi-GPU Throughput Timings (ns/day) for
AMBER PME Simulations with a Time Step of 2 fs Using the
Parallel CPU Version (16 Intel Xeon E5-2670 cores
connected via Dual rail QDR InfiniBand network) and the
Parallel GPU Version with the SPFP Precision Modela

DHFR Factor IX cellulose

CPU/GPU (23,558 atoms) (90,906 atoms) (408,576 atoms)

GPU version
2 × GTX-TITAN 125.28 38.05 8.72
1 × GTX-TITAN 110.65 31.55 7.69
2 × K20X 106.54 33.13 7.67
1 × K20X 89.41 25.45 6.16
4 × GTX680 118.88 33.84 7.56
3 × GTX680 101.31 27.90 6.47
2 × GTX680 86.84 23.05 5.30
1 × GTX680 74.40 22.65 4.36
8 × K10 113.82 28.86 7.06
6 × K10 112.73 29.54 7.17
4 × K10 97.95 25.72 6.44
3 × K10 82.70 23.25 5.45
2 × K10 67.02 19.12 4.33
1 × K10 52.03 16.03 3.28
CPU version
384 × E5-2670 − − 5.92
256 × E5-2670 − − 5.88
128 × E5-2670 − 22.68 5.72
96 × E5-2670 − 19.33 4.73
64 × E5-2670 58.19 17.52 3.73
48 × E5-2670 50.25 13.99 2.95
32 × E5-2670 38.49 10.28 2.05
16 × E5-2670 21.13 5.57 1.12

aNote: 1 × K10 means 1 GPU of the two available on the card,
therefore 8 × K10 means four K10 cards were used. A dash represents
slowdown over lower concurrency.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXG

ensemble properties from converged simulations run in all
precision models. In this section, we attempt to extensively
validate our GPU code comparing a number of key observables
across all three DPDP, SPFP, and SPDP precision models with
the reference CPU calculation. We have also included some
results obtained from our now deprecated precision model
SPSP for completeness.
5.1. Single Point Forces. The most important values

calculated during an MD simulation are the forces acting on
each atom that determine in turn the evolution of the
simulation. Therefore, the effect of the numerical precision
model on the force calculations as compared to the CPU
reference is an important metric in the validation of our GPU
implementation. The deviations in the forces are summarized in
Table 6 for the test systems used in Section 4 plus the satellite
tobacco mosaic virus (STMV) (1,066,846 atoms).

The DPDP model matches the reference forces very closely
with maximum deviations not exceeding 10−6 kcal/(mol Å) and
RMS deviations not exceeding 10−7 kcal/(mol Å), even for
systems as large as the STMV (1,066,846 atoms). These
deviations are entirely due to the different order of execution of
the floating point operations in the CPU and GPU
implementations. The DPDP GPU implementation of
pmemd will thus generate trajectories of precision equivalent
to the CPU implementation.
Calculating the force contributions in SP and accumulating

them in DP or FP show identical and small deviations in
comparison to the reference CPU code. In the following
section, we show that the forces obtained from the SPDP and
SPFP models are sufficiently accurate to conserve energy in
biomolecular MD simulations and present no problems in long
time scale MD simulations. Forces obtained with the SPSP
precision model here present a deviation in the forces at least 1
order of magnitude larger in all the systems tested compared to
SPDP and SPFP. This can lead to numerical instabilities as
shown in our previous work and Section 5.2.
5.2. Energy Conservation. The ability to conserve the

constants of motion is an important measure to judge the
precision of an MD software package. In an NVE simulation,
the energy is one of such constants. We have performed
constant energy MD simulations of the first three test systems
of increasing size used in Section 4. We collected data for 10 ns
(DHFR), 5 ns (Factor IX), and 1 ns (cellulose) after an initial

equilibration for 1 ns at 300 K using Langevin dynamics. Three
different calculations were run with time steps of 0.5, 1.0, and
2.0 fs, respectively. Simulations using a time step of 2 fs were
performed with bonds to hydrogen atoms constrained using the
SHAKE algorithm with a relative geometrical tolerance of 10−6

Å, while runs using time steps of 0.5 and 1.0 fs were performed
without constraints.
The energy drifts, obtained from the slope of a linear

regression fit to the energy values obtained during the
calculations described above, are summarized in Table 7,

while Figure 2 shows a plot of the total energy for the
trajectories of DHFR and Factor IX for the different precision

Table 6. Deviations of Forces (kcal/(mol Å)) of the AMBER
pmemd GPU Implementation Using Different Precision
Models for PME Explicit Solvent Simulations as Compared
to Reference Values Obtained with the CPU Implementation

DHFR Factor IX Cellulose STMV

precision
model

(23,558
atoms)

(90,906
atoms)

(408,576
atoms)

(1,066,846
atoms)

max deviation
SPSP 5.3 × 10−3 1.4 × 10−2 1.9 × 10−2 9.4 × 10−2

SPFP 3.4 × 10−4 2.2 × 10−3 1.9 × 10−3 4.0 × 10−3

SPDP 3.4 × 10−4 2.2 × 10−3 1.9 × × 10−3 4.0 × 10−3

DPDP 6.0 × 10−8 2.1 × 10−6 4.6 × 10−8 9.4 × 10−8

RMS deviation
SPSP 2.8 × 10−4 3.6 × 10−4 9.4 × 10−4 1.2 × 10−3

SPFP 2.3 × 10−5 1.2 × 10−4 7.8 × 10−5 1.3 × 10−4

SPDP 2.3 × 10−5 1.2 × 10−4 7.8 × 10−5 1.3 × 10−4

DPDP 1.5 × 10−9 2.1 × 10−7 1.3 × 10−9 2.1 × 10−9

Table 7. Energy Drifts per Degree of Freedom (kT/ns/dof)
from Simulations of 10 ns (DHFR), 5 ns (Factor IX), and 1
ns (cellulose)a

time step 0.5 fs 1.0 fs 2.0 fs

DHFR (23,558 atoms)
CPU −1.3 × 10−7 1.3 × 10−6 −4.7 × 10−5

GPU (DPDP) 1.0 × 10−6 1.3 × 10−6 −4.4 × 10−5

GPU (SPDP) −5.2 × 10−5 5.0 × 10−5 −1.4 × 10−5

GPU (SPFP) −5.2 × 10−5 5.3 × 10−5 −1.7 × 10−5

GPU (SPSP) 2.0 × 10−3 1.2 × 10−3 1.5 × 10−1

Factor IX (90,906 atoms)
CPU −4.8 × 10−8 2.1 × 10−6 −2.2 × 10−5

GPU (DPDP) 7.8 × 10−7 3.0 × 10−6 −2.8 × 10−5

GPU (SPDP) −9.9 × 10−5 6.4 × 10−5 −4.1 × 10−5

GPU (SPFP) −9.9 × 10−5 6.4 × 10−5 −4.1 × 10−5

GPU (SPSP) 2.7 × 10−3 1.6 × 10−3 1.3 × 10−1

cellulose (408,576 atoms)
CPU 6.2 × 10−6 3.7 × 10−5 2.3 × 10−5

GPU (DPDP) 1.1 × 10−5 5.1 × 10−5 2.9 × 10−5

GPU (SPDP) 6.1 × 10−5 −3.1 × 10−5 1.1 × 10−4

GPU (SPFP) 5.9 × 10−5 −3.5 × 10−5 1.2 × 10−4

GPU (SPSP) 6.5 × 10−3 3.5 × 10−3 5.0 × 10−2

aThe SHAKE algorithm to constrain bond lengths to hydrogen atoms
was used for a time step of 2.0 fs; no constraints were used for smaller
time steps.

Figure 2. Total energy (kcal/mol) along constant energy trajectories
using a time step of 0.5 fs without constraints. Shown are results for
DHFR (top), Factor IX (center), and cellulose (bottom) for different
precision models. Red SPSP, dark blue SPFP, orange SPDP, black
DPDP, and light blue CPU.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXH

models at a time step of 0.5 fs. It can be seen that all precision
models presently included in AMBER v12 (SPFP, SPDP, and
DPDP) behave reasonably well for all trajectories. Although
SPSP has been officially deprecated in AMBER v12, we have
included some results for this precision model to offer some
critical information on the use of this model. We can see in
Figure 2 that while most precision models have a similar very
small energy drift, SPSP diverges significantly from the rest.
Apart from the magnitude in the energy drift, the
corresponding plot for all systems with 1 or 2 fs time steps
present a similar behavior and can be found in the Supporting
Information. Table 7 shows the magnitude of the energy drift
per degree of freedom. The divergence of the energy is
significantly larger for the SPSP precision model, being in some
instances more than 4 orders of magnitude larger.
By way of comparison, other MD codes have reported values

for energy drifts for simulations of DHFR under similar
conditions. The literature-reported energy drift values (in units
of KT/ns/dof) for some important MD software packages are
(for DHFR) 0.011 for GROMACS,24 0.0047 for NAMD,49 and
0.0033 for Desmond49 for a simulation with a time step of 1 fs.
The last two values have been scaled by a factor of 1/600 with
respect to the reported values for correct unit conversion. In
light of this, AMBER’s SPFP value of 0.000053 for DHFR
compares very favorably.
Although simulations using full single precision floating point

implementations seem stable and are widely used by other
groups, the net effect of rounding errors on the distributions
sampled is hard to assess. It can be observed in all the previous
results that SPFP reproduces the behavior of the higher
precision models without presenting any of the potential
problems SPSP does. This positive behavior, plus the favorable
performance and scaling, favored by the architecture of modern
GPU cards, are the reason why SPFP is now the default
precision model for AMBER and SPSP has been formally
deprecated.
5.3. Structural Properties. Molecular dynamics has been

widely used in the study of protein interaction and function.
Most of these studies are based on structural analysis performed
during an MD simulation. All these studies depend on the
reliability of the structural properties obtained during the
simulation.
In order to test the reliability of our implementation for

protein dynamics, we present results of MD simulations of
ubiquitin with the different accuracy models of our GPU
implementation. We present results for the root-mean-square
deviations (RMSDs) and root-mean-square fluctuations
(RMSFs) of the Cα backbone carbon atoms with respect to
the crystal structure (PDB code 1UBQ50,51). Residues 71 to 76
have been excluded due to the inherent high flexibility these
residues present.
In order to attempt statistically converged results, 60

independent MD trajectories each of 100 ns length were
generated at 300 K for each of the precision models of the GPU
and for the CPU implementation. The runs were performed at
constant temperature, using the Berendsen weak coupling
algorithm52 with a time constant of τT = 10.0 ps. Although the
use of a thermostat will to some extent cover up numerical
noise introduced by numerical inaccuracies in the implementa-
tion, the runs were designed to reflect the fact that typical
biomolecular AMBER simulations are generally run with some
form of temperature control. The ff99SB38 force field was used
for all simulations with a time step of 2 fs and bonds to

hydrogen atoms were constrained using the SHAKE algorithm
with a relative geometrical tolerance of 10−6 Å. Output and
trajectory files were saved every 1000 steps (2 ps) for analysis.
The starting point for each of the 60 trajectories was

obtained from three 200 ns long CPU runs of ubiquitin each
prepared as follows. Starting from the crystal structure an
energy minimization using 2000 steps of steepest descent
followed by heating and an initial equilibration for 1 ns at 300 K
using Langevin dynamics with a collision frequency of γ = 1.0
ps−1 was conducted. A 200 ns long MD run at a constant
temperature of 300 K was performed from which the 20
snapshots were selected to be equally separated in simulation
time. Each of the 60 resulting snapshots was then assigned
random velocities corresponding to a temperature of 10 K
followed by heating and equilibration to 300 K using Langevin
dynamics for 50 ps and finally the removal of any center of
mass motion that may have been introduced. Using the CPU
generated restart files in all cases guarantees that any numerical
differences observed between the various implementations can
be traced back to the numerical precision of the implementa-
tion and is not an artifact of different initial conditions.
Figure 3 shows RMSD values for all simulations of ubiquitin

using the CPU and all GPU versions of the code. The results

are equivalent across all versions showing that the relative
mobility and spatial distribution of the protein is maintained.
The RMSF values for each residue for the 60 native-state
simulations are shown in Figure 4. The results for RMSD
(Figure 3) and the corresponding RMSF values (Figure 4)
remain very similar for all GPU precision models and the CPU
calculations.

6. CONCLUSIONS AND OUTLOOK
We have presented our implementation of a GPU-accelerated
MD engine in AMBER (pmemd.cuda), first publicly released in
2010, for explicit solvent simulations using PME for long-range
interactions. We have formally presented our GPU implemen-
tation, plus some improvements that were made since the first

Figure 3. Root-mean-square deviations (RMSDs) of the Cα backbone
carbon atoms of ubiquitin (excluding the flexible tail, residues 71 to
76) with respect to the crystal structure for 60 NVT independent
trajectories as obtained with the CPU implementation and the GPU
implementation of pmemd using different precision models.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXI

part of this paper describing the implicit solvent GB
implementation was published. The implementation is based
on AMBER pmemd and includes the majority of the
capabilities of the regular CPU MD engine. Input and output
files follow the same guidelines for all AMBER MD engines,
such that the only change on the user’s end is the name of the
executable being invoked, thus removing any learning curve.
Additionally, all regression tests and analysis tools included in
AMBER or developed by other groups offering support for
AMBER are completely compatible with the GPU implemen-
tation; thus, no extra time should be invested on the user’s side
to adapt their established pipelines of work. The present
implementation offers support for both AMBER and
CHARMM force fields as well as several important methods
commonly used in MD such as accelerated molecular dynamics
(aMD) and replica exchange MD. The implementation runs
with single or multiple GPUs in a single node or across multiple
nodes via MPI. The peak performance for simulations of typical
simulation size is of the order of 100 ns/day, for example,
110.65 ns/day for DHFR (23,558 atoms) running on a single
NVIDIA GTX-TITAN GPU card. Similar calculations
performed on a state of the art CPU node perform almost 6
times worse, for example, 16 cores of a Dual × Oct Core Intel
Sandy Bridge E5-2670 2.6 GHz CPU have a peak performance
of 21.1 ns/day. Even on the best CPU clusters, the performance
tops off at half of the performance (58.2 ns/day) compared to
the GPU code. This simple analysis also reflects the fact that
four GPUs can be added to a single node for a total of less than
$5000 and can run four independent calculations each at full
speed. The GPU accelerated software implementation thus
offers the possibility to perform high-performance production
runs on commodity hardware with a minimum investment of
money and without long queue waiting times. This will surely
enhance the natural pipeline of scientific biomolecular and
chemical research.
We have shown that a precision model using entirely single

precision floating point arithmetic (SPSP) shows force
deviations several orders of magnitude larger than mixed

precision models. This leads to perceivable drifts in energy for
NVE simulations as a result of an accumulation of errors along
the trajectory due to rounding. While this behavior can to some
extent be compensated in NVT simulations with the use of
good thermostats, it is an uncontrolled source of error and its
possible effects are hard to foresee. These observations are
consistent with the behavior presented in equivalent GB
simulations.29 SPSP has therefore been deprecated from the
present implementation of AMBER. SPFP offers an excellent
alternative solution as it not only offers numerical stability but
in addition performs and scales almost equivalently with a
lower memory requirement on modern GPU cards.
GPU technology continues to evolve and improve rapidly

due to its vast number of applications in research and
commercial areas. The development of better cards and
improved intra- and inter-node communication will surely
continue to improve the performance and applicability of GPUs
for scientific research and high-performance computing. Since
the release of our GPU accelerated implementation of AMBER
in 2010, the number of users and papers using this engine has
been growing rapidly and continuously. GPU accelerated
AMBER has proved to be a widely used and appreciated
software that is positively impacting the molecular chemical and
biological research fields.

■ ASSOCIATED CONTENT
*S Supporting Information
AMBER input files used for the performance tests of Section 4,
for the validation of the accuracy of single point forces of
Section 5.1, for the validation of energy conservation of Section
5.2, and for the validation of the numerical accuracy of
structural properties of Section 5.3. Plots showing the energy
conservation for the trajectories of DHFR, Factor IX, and
Cellulose for the different precision models and time steps of
1.0 and 2.0 fs. This material is available free of charge via the
Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: ross@rosswalker.co.uk.

Present Address
∥Scott Le Grand: Amazon Web Services, 2201 Westlake Ave.,
Suite 500, Seattle, Washington 98121, United States.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was funded in part by the National Science
Foundation through the Scientific Software Innovations
Institutes program NSF SI2-SSE (NSF1047875 and
NSF1148276) grants to R.C.W and also by the University of
California (UC Lab 09-LR-06-117792) grant to R.C.W.
Computer time was provided by the San Diego Supercomputer
Center through National Science Foundation award TG-
CHE130010 to R.C.W. and A.W.G. The work was also
supported by CUDA fellowships to R.C.W. and S.LG. from
NVIDIA. S.LG. thanks Amazon Web Services for support and
also his late father (Donald George Le Grand) for inspiration.

■ REFERENCES
(1) Grossfield, A. Biochim. Biophys. Acta 2011, 1808, 1868−1878.

Figure 4. Root-mean-square fluctuations (RMSFs) of the Cα backbone
carbon atoms of ubiquitin residues 71 to 76 with respect to the crystal
structure for 60 NVT independent trajectories of 100 ns length as
obtained with the CPU implementation and the GPU implementation
of pmemd using different precision models.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXJ

http://pubs.acs.org
mailto:ross@rosswalker.co.uk

(2) Andre,́ S.; Pei, Z.; Siebert, H.-C.; Ramström, I.; Gabius, H.-J.
Bioorg. Med. Chem. 2006, 14, 6314−6326.
(3) Harvey, M. J.; De Fabrittis, G. Drug Discovery Today 2012, 17,
1059−1062.
(4) Zwier, M. C.; Chong, L. T. Curr. Opin. Pharmacol. 2010, 10,
745−752.
(5) Durrant, J. D.; McCammon, J. A. BMC Biol. 2011, 71, 1−9.
(6) Peŕez, A.; Luque, F. J.; Orozco, M. Acc. Chem. Res. 2011, 45,
196−205.
(7) Wereszczynski, J.; McCammon, J. A. Q. Rev. Biophys. 2012, 45,
1−25.
(8) Šponer, J.; Cang, X.; Cheatham, T. E., III Methods 2012, 57, 25−
39.
(9) Pierce, L. C.; Salomon-Ferrer, R.; de Oliveira, C. A. F.;
McCammon, J. A.; Walker, R. C. J. Chem. Theory Comput. 2012, 8,
2997−3002.
(10) Skjevik, r. A.; Madej, B. D.; Walker, R.; Teigen, K. J. Phys. Chem.
B 2012, 116, 11124−11136.
(11) Dickson, C. J.; Rosso, L.; Betz, R. M.; Walker, R.; Gould, I. R.
Soft Matter 2012, 8, 9617−9627.
(12) Xu, D.; Williamson, M. J.; Walker, R. C. Advancements in
Molecular Dynamics Simulations of Biomolecules on Graphical
Processing Units. In Annual Reports in Computational Chemistry;
Simmerling, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2010;
Vol. 6, Chapter 1, pp 3−19.
(13) Götz, A. W.; Wölfle, T. M.;Walker, R. C. Quantum Chemistry
on Graphics Processing Units. In Annual Reports in Computational
Chemistry; Simmerling, C., Ed.; Elsevier: Amsterdam, The Nether-
lands, 2010; Vol. 6, Chapter 2, pp 21−35.
(14) Harvey, M. J.; De Fabritiis, G. WIREs Comput. Mol. Sci. 2012, 2,
734−742.
(15) Garland, M.; Le Grand, S.; Nickolls, J.; Anderson, J.; Hardwick,
J.; Morton, S.; Phillips, E.; Zhang, Y.; Volkov, V. IEEE Micro. 2008, 28,
13−27.
(16) Preis, T. Eur. Phys. J.: Spec. Top. 2011, 194, 87−119.
(17) Pratx, G.; Lei, X. Med. Phys. 2011, 38, 2685−2697.
(18) NVIDIA list of projects in different disciplines that use GPUs.
https://developer.nvidia.com/cuda-action-research-apps (accessed
October 2012).
(19) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,
E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput.
Chem. 2005, 26, 1781−1802.
(20) Stone, J. E.; Phillips, J. C.; Freddolino, P. L.; Hardy, D. J.;
Trabuco, L. G.; Schulten, K. J. Comput. Chem. 2007, 28, 2618−2640.
(21) Case, D. et al. AMBER 12, University of California, San
Francisco, 2012.
(22) Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. WIREs Comput.
Mol. Sci. 2013, 3, 198−210.
(23) van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.
E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701−1718.
(24) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem.
Theory Comput. 2008, 4, 435−447.
(25) Plimpton, S. J. Comput. Phys. 1995, 117, 1−19.
(26) Brooks, B. R.; et al. J. Comput. Chem. 2009, 30, 1545−1615.
(27) Harvey, M. J.; Giupponi, G.; Fabritiis, G. D. J. Chem. Theory
Comput. 2009, 5, 1632−1639.
(28) Eastman, P.; et al. J. Chem. Theory Comput. 2013, 9, 461−469.
(29) Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.;
Walker, R. C. J. Chem. Theory Comput. 2012, 8, 1542−1555.
(30) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;
Oxford University Press: Oxford, 1991.
(31) Tironi, I. G.; Sperb, R.; Smith, P. E.; van Gunsteren, W. F. J.
Chem. Phys. 1995, 102, 5451−5459.
(32) Wu, X.; Brooks, B. J. Chem. Phys. 2005, 122, 044107.
(33) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,
10089−10092.
(34) Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.;
Pedersen, L. J. Chem. Phys. 1995, 103, 8577−8593.

(35) Hockney, R.; Eastwood, J. Computer Simulation Using Particles;
Adam Hilger: Bristol, U.K., 1988; Chemistry; Computer Science;
Physics (provided by Thomson Reuters).
(36) Le Grand, S.; Götz, A. W.; Walker, R. C. Comput. Phys.
Commun. 2013, 184, 374−380.
(37) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K.
M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.;
Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179−5197.
(38) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.;
Simmerling, C. Proteins 2006, 65, 712−725.
(39) Harvey, M. J.; Fabritiis, G. D. J. Chem. Theory Comput. 2009, 5,
2371−2377.
(40) Brown, W. M.; Kohlmeyer, A.; Plimpton, S. J.; Tharrington, A.
N. Comput. Phys. Commun. 2012, 183, 449−459.
(41) Brown, W. M.; Wang, P.; Plimpton, S. J.; Tharrington, A. N.
Comput. Phys. Commun. 2011, 182, 898−911.
(42) Friedrichs, M. S.; Eastman, P.; Vaidyanathan, V.; Houston, M.;
Legrand, S.; Beberg, A. L.; Ensign, D. L.; Bruns, C. M.; Pande, V. S. J.
Comput. Chem. 2009, 30, 864−872.
(43) Eastman, P.; Pande, V. S. J. Comput. Chem. 2010, 31, 1268−
1272.
(44) Hilbert, D. Mathematische Annalen 1891, 38, 459−460.
(45) NVIDIA CUFFT library. https://developer.nvidia.com/cufft
(accessed October 2012).
(46) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952−
962.
(47) Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard, Version 2.2; High-Performance Computing Center
Stuttgart, University of Stuttgart: Stuttgart, Germany, 2009.
(48) Case, D. A. et al. AMBER 11, University of California: San
Francisco, 2010.
(49) Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.;
Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.;
Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.; Shaw, D. E. Scalable
Algorithms for Molecular Dynamics Simulations on Commodity
Clusters. Proceedings of the 2006 ACM/IEEE Conference on Super-
computing, New York, 2006.
(50) Vijaykumar, S.; Bugg, C. E.; Wilkinson, K. D.; Cook, W. J. Proc.
Nat. Acad. Sci. 1985, 82, 3582−3585.
(51) Vijaykumar, S.; Bugg, C. E.; Cook, W. J. J. Mol. Bio. 1987, 194,
531−544.
(52) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684−3690.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400314y | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXK

https://developer.nvidia.com/cuda-action-research-apps
https://developer.nvidia.com/cufft

