
An Investigation of the Effects of Error Correcting Code on
GPU-accelerated Molecular Dynamics Simulations

Ross C. Walker
San Diego Supercomputer Center

Department of Chemistry and Biochemistry
UC San Diego

La Jolla, CA 92093
ross@rosswalker.co.uk

Robin M. Betz
San Diego Supercomputer Center

La Jolla, CA 92093
rbetz@ucsd.edu

ABSTRACT
Molecular dynamics (MD) simulations rely on the accurate
evaluation and integration of Newton’s equations of motion
to propagate the positions of atoms in proteins during a
simulation. As such, one can expect them to be sensitive to
any form of numerical error that may occur during a sim-
ulation. Increasingly graphics processing units (GPUs) are
being used to accelerate MD simulations. Current GPU ar-
chitectures designed for HPC applications support error cor-
recting codes (ECC) that detect and correct single bit-flip
error events in GPU memory; however, this error checking
carries a penalty in terms of simulation speed. ECC is also
a major distinguishing feature between HPC NVIDIA Tesla
cards and the considerably more cost-effective NVIDIA GeForce
gaming cards. An argument often put forward for not using
GeForce cards is that the results are unreliable due to the
lack of ECC. In an initial attempt to quantify these concerns,
an investigation of the effects of ECC on GPU-accelerated
MD simulations using the AMBER software was conducted
on 720 GPUs of the XSEDE supercomputer Keeneland with
and without ECC. While the data collected are insufficient
to make solid conclusions and more extensive testing is needed
to provide quantitative statistics, the absence of ECC events
and lack of any silent errors in all the simulations conducted
to date suggest that these errors are exceedingly rare and as
such the time and memory penalty of ECC may outweigh
the utility of error checking functionality. This is particu-
larly true in the case of large scale HPC runs where simu-
lation is more likely to be interrupted by a node or storage
failure and thus reducing the simulation wall clock time by
turning ECC off may actually reduce the overall simulation
failure rate.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
XSEDE 2013 San Diego, California USA
Copyright 2013 ACM 978-1-4503-2170-9/13/07 ...$15.00.

Keywords
XSEDE 2013, GPU-acceleration, ECC error

1. INTRODUCTION
The field of computational sciences uses the power of mod-

ern computers to gain insight into scientific systems. Re-
searchers expend considerable time and effort using limited
computational resources to create simulations that provide
accurate results on reasonable timescales. As the goal of a
simulation is to accurately represent real-world situations,
elimination of mathematical error is a significant concern
for computational scientists and both hardware and soft-
ware are therefore routinely examined in-depth to identify
and mitigate sources of error.

In the late 1970s, atmospheric radiation was found to
cause bit-flips in random access memory (RAM), introduc-
ing small errors that could accumulate and lead to system
malfunction or incorrect results if left unchecked [13]. As
these errors are random, hardware-independent, and in prin-
ciple unpreventable, extra parity bits and Hamming codes
were added to DRAM modules in order to detect and correct
for these errors [2]. This approach has largely continued to
the present day with server-class hardware; desktop hard-
ware does not typically include ECC checking of RAM.

The ability to run simulations on graphics processing units
(GPUs) has opened up new frontiers for simulation com-
plexity and timescale, but has correspondingly increased the
opportunities for hardware errors [7]. In order to mitigate
the anticipated effects of bit-flip errors in GPU memory,
NVIDIA has implemented ECC functionality in its latest
GPU architectures from the Fermi class onward, at a cost
of approximately 10% of GPU memory and speed and cor-
respondingly higher energy consumption [9]. It should be
noted that the GeForce gaming class hardware does not in-
clude any form of ECC support.

The molecular dynamics code AMBER, which stands for
Assisted Model Building with Energy Refinement, is a pack-
age of molecular simulation programs that is widely used
within the computational chemistry and computational molec-
ular biology communities [1, 10]. It includes a wide variety
of programs that enable the simulation of molecular systems
at the atomic level as well as tools for all stages of the simu-
lation workflow. The AMBER project is focused on accurate
and efficient simulation, and as such uses parallelization and
GPU-acceleration to improve computation speed [4, 6].

AMBER was selected for this experiment as it is the only
molecular dynamics code that is deterministic on GPUs,

and multiple simulations on the same hardware will pro-
duce bitwise-identical results in the absence of errors. This
allows for easy identification of problems in multiple GPU
simulations, and presents an environment to look for ran-
dom, transient errors that are not possible to identify in the
output of other simulation programs.

The size of the system that may be simulated by GPU-
accelerated AMBER is limited by the amount of available
GPU memory. As such, enabling ECC reduces the size
of systems that may be simulated by approximately 10%.
Enabling ECC also reduces simulation speed, resulting in
greater opportunity for other sources of error such as disk
failures in large filesystems, power glitches, and unexplained
node failures to be introduced during the calculation.

Finally, ECC events in RAM are exceedingly rare, requir-
ing over 1000 testing hours to observe [3, 8]. The ECC error
rate has not been successfully quantified by any study– pre-
vious attempts conducted over 10,000 hours of testing with-
out seeing a single ECC error event [11]. Testing of GPUs
for any form of soft error found that the error rate was pri-
marily determined by the memory controller in the GPU,
and that the newer cards based on the GT200 chipset had a
mean error rate of zero [5]. However, the baseline value for
the rate of ECC events in GPUs is unknown.

The XSEDE high performance heterogeneous computing
system Keeneland was used to investigate these considera-
tions [12]. A large, 10-hour simulation was run on all GPUs
of the machine with ECC both on and off. An analysis of the
resulting trajectory was conducted to identify all sources of
error in order to investigate the effects of ECC on AMBER
simulations, and describe the rate and effects of ECC error
events.

2. SIMULATION SETUP
AMBER was used to simulate the tobacco mosaic virus

(STMV) shown in figure 1, in explicit solvent. SMV was
chosen because at 1,067,095 atoms it represents the larger
end of the simulation size range AMBER users typically run.
This also means that it uses approximately 2.6 GB (48% of
the GPU card’s memory) making it in principle more sus-
ceptible to memory corruption errors than a system which
only occupies a small amount of memory.

The system was equilibrated and a NPT simulation at
300K was run with a timestep of 2 fs for a total of 0.3 ns
of simulation. All atoms including solvent were saved to
the output trajectory every 100 steps giving a total binary
trajectory size of 19 GB per simulation.

AMBER simulations are ideal to test the effects of po-
tential ECC errors as the output of correct runs is bitwise
identical, enabling easy comparison between GPUs that re-
turn successful results and those that have errors.

The simulation was run with exactly the same starting
conditions on each of the 3 M2090 GPUs on 240 nodes of
Keeneland for a total of 720 identical runs. Once the approx-
imately 10-hour run completed, the machine was rebooted
in order to turn ECC off for each GPU, and the run was re-
peated. Issues with scheduling following the reboot resulted
in only 447 of the ECC off runs executing, however there
was still ample data to conduct an error analysis.

3. RESULTS
The time penalty incurred from activating ECC was ev-

Figure 1: Satellite tobacco mosaic virus. The pro-
tein coat is in grey, and the viral DNA is shown in
red. Solvent is omitted from this rendering.

Table 1: Walltime information in hours for success-
ful runs.

ECC State Mean Walltime Standard Deviation

ON 9.951 hours 0.079 hour

OFF 9.096 hours 0.006 hour

ident: jobs without it ran 8.8% faster. Interestingly, ECC
made walltime usage considerably more variable. A sum-
mary of timing information may be found in table 1.

Three runs on the same node with ECC on failed while
reading the input coordinates, most likely due to a problem
with I/O on the node. The remaining 717 completed without
error. A single run with ECC off hung during the middle of
the calculation while the remainder completed successfully
yielding 446 bitwise identical (19 GB each) trajectory and
output files.

The biggest concern with uncorrected memory errors is
not that a calculation might hang or crash occasionally but
that it could conceivably, with low bit errors, give what ap-
pear to be reasonable but scientifically invalid results due
to silent data corruption. In these tests however there was
no divergence observed in any of the simulations with or
without ECC.

All runs that completed successfully returned the same
trajectory– there was no divergence observed in any GPU
with or without ECC. Additionally, none of the cards with
ECC enabled reported correcting any ECC errors, indicating
that most likely no ECC events occurred during the runs. It
should be noted that the 720 GPUs utilized in these tests,
when the hardware counters were checked, had reported no
ECC error detection events within their entire installation
life, which has been approximately 6 months.

4. CONCLUSION
Although the ability of ECC to detect and correct single

bit errors is undeniably useful in theory, the practical ap-
plication of this technology may not be in the interests of
the molecular dynamics community. This test showed that
the ability of ECC to correct extremely rare errors did not

outweigh the costs in terms of system size and calculation
speed. These errors appear to be so rare in production GPU
calculations that their rate of incidence could not be quan-
tified with this experiment.

The fact that other sources of hardware error were ob-
served during the experiment regardless of ECC status in-
dicates that there are much more probable ways for simu-
lations to fail and that such failures most likely cause the
simulation to crash rather than to produce bad data. The
concept of ECC or other events producing “silent errors” in
a seemingly successful run was not supported by this exper-
iment.

The improved performance without ECC may actually im-
ply higher reliability than with error checking enabled, as it
reduces the time window that the simulation runs and is
therefore vulnerable to network, I/O, or other failures. As
a result of this performance gain, representing error rates
as errors per nanosecond of simulation may indicate that
simulations with ECC off are potentially more reliable.

Future work with longer simulations on more GPUs in the
hopes of observing an ECC event will hopefully produce an
estimate of the baseline ECC error rate. Failing that, the
effects of random memory corruption may be simulated with
either programs or an external radiation source in order to
determine whether silent errors do occur. Currently, their
absence in this and other tests makes an argument for con-
sidering the elimination of ECC in favor of reduced costs,
increased system size support and simulation speed.

5. ACKNOWLEDGMENTS
This research used resources of the Keeneland Computing

Facility at the Georgia Institute of Technology, which is sup-
ported by the National Science Foundation under Contract
OCI-0910735.

This work was funded in part by the National Science
Foundation through the Scientific Software Innovations In-
stitutes Program - NSF SI2-SSE (NSF1047875 and NSF1148276)
grants to R.C.W and also by the University of California
(UC Lab 09-LR-06-117792) grant to R.C.W. The work was
also supported by a CUDA fellowship to R.C.W from NVIDIA
Inc.

6. REFERENCES
[1] D. Case, T. Darden, T. C. III, C. Simmerling,

J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang,
K. Merz, B. Roberts, S. Hayik, A. Roitberg,
G. Seabra, J. Swails, A. Goetz, I. Kolossváry,
K. Wong, F. Paesani, J. Vanicek, R. Wolf, J. Liu,
X. Wu, S. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai,
X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. Roe,

D. Mathews, M. Seetin, R. Salomon-Ferrer, C. Sagui,
V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and
P. Kollman. Amber 12. 2012.

[2] K. Furutani, K. Arimoto, H. Miyamoto, T. Kobayashi,
K. Yasuda, and K. Mashiko. A built-in Hamming code
ECC circuit for DRAMs. Solid-State Circuits, IEEE
Journal of, 24(1):50–56, 1989.

[3] M. Gordon, K. Rodbell, D. Heidel, C. Cabral Jr,
E. Cannon, and D. Reinhardt. Single-event-upset and
alpha-particle emission rate measurement techniques.
IBM Journal of Research and Development,
52(3):265–274, 2008.

[4] A. W. Götz, M. J. Williamson, D. Xu, D. Poole,
S. Le Grand, and R. C. Walker. Routine microsecond
molecular dynamics simulations with AMBER on
GPUs. Journal of Chemical Theory and Computation,
8(5):1542–1555, 2012.

[5] I. S. Haque and V. S. Pande. Hard data on soft errors:
A large-scale assessment of real-world error rates in
GPGPU. In 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing,
pages 691–696. IEEE, 2010.

[6] S. Le Grand, A. W. Götz, and R. C. Walker. Spfp:
Speed without compromise - a mixed precision model
for GPU accelerated molecular dynamics simulations.
Comp. Phys. Comm, 184:374–380, 2013.

[7] J. Nickolls and W. J. Dally. The GPU computing era.
Micro, IEEE, 30(2):56–69, 2010.

[8] E. Normand. Single event upset at ground level.
Nuclear Science, IEEE Transactions on,
43(6):2742–2750, 1996.

[9] D. Patterson. The top 10 innovations in the new
NVIDIA Fermi architecture, and the top 3 next
challenges. NVIDIA Whitepaper, 2009.

[10] R. Salomon-Ferrer, D. Case, and R. Walker. An
overview of the Amber biomolecular simulation
package. WIREs Comput. Mol. Sci., 2012.

[11] G. Shi, M. Showerman, and V. Kindratenko. On
testing GPU memory for hard and soft errors. In Proc.
Symposium on Application Accelerators in
High-Performance Computing, 2009.

[12] J. S. Vetter, R. Glassbrook, J. Dongarra, K. Schwan,
B. Loftis, S. McNally, J. Meredith, J. Rogers, P. Roth,
K. Spafford, et al. Keeneland: Bringing heterogeneous
GPU computing to the computational science
community. Computing in Science & Engineering,
13(5):90–95, 2011.

[13] J. Ziegler and W. Lanford. Effect of cosmic rays on
computer memories. Science, 206(4420):776, 1979.

