
Implementing Continuous Integration Software in
an Established Computational Chemistry Software

Package
Robin M. Betz

San Diego Supercomputer Center
La Jolla, CA 92093

USA
rbetz@ucsd.edu

Ross C. Walker
San Diego Supercomputer Center

and
Department of Chemistry and Biochemistry

UC San Diego
La Jolla, CA 92093

USA
ross@rosswalker.co.uk

Abstract—Continuous integration is the software engineering

principle of rapid and automated development and testing.

We identify several key points of continuous integration and

demonstrate how they relate to the needs of computational

science projects by discussing the implementation and relevance

of these principles to AMBER, a large and widely used molecular

dynamics software package. The use of a continuous integration

server has both improved collaboration and communication

between AMBER developers, who are globally distributed, as

well as making failure and benchmark information that would be

time consuming for individual developers to obtain by themselves,

available in real time. Continuous integration servers currently

available are aimed at the software engineering community and

can be difficult to adapt to the needs of computational science

projects, however as demonstrated in this paper the effort payoff

can be rapid since uncommon errors are found and contributions

from geographically separated researchers are unified into one

easily-accessible web-based interface.

I. INTRODUCTION

The needs of computational science and engineering (CSE)
projects greatly differ from those of more traditional business
enterprise software, especially in terms of code validation
and testing. When the desired outcome of a program is
an unknown subject of research, development of unit tests
and other traditional measurements of software validity is
difficult or even impossible. Tools designed to simplify the
development process often do not mesh readily with the goals
of CSE codes, and as a result test suites are typically written
from scratch and then later abandoned entirely.

In addition, development of CSE codes occur among groups
with backgrounds that are very different from that of a
software engineer– most CSE researchers approach the dis-
cipline primarily from a scientific background, and are often
unfamiliar with good development practices. This is further
complicated by the fact that groups are often distributed among
many universities and even countries, making collaboration
and group decision-making complicated.

This paper presents an approach to simplifying the develop-
ment of the molecular dynamics code AMBER [1] [2] by im-

plementing continuous integration software. The challenges of
making this work with the complex and diverse code base are
discussed, as are the various successes of the implementation.
The introduction of software engineering tools to AMBER
has ultimately proven to be extremely useful in unifying
a geographically separated group of developers with very
different computer and computational science backgrounds.

II. PROJECT BACKGROUND

Assisted Model Building with Energy Refinement, or AM-
BER, is a package of molecular simulation programs that is
widely used within the computational chemistry and compu-
tational molecular biology communities. It includes a wide
variety of programs that enable the simulation of molecular
systems at the atomic level. It includes tools for all stages
of the simulation workflow, from setting up the simulation to
running it efficiently to conducting a comprehensive analysis
of the results. AMBER also includes a set of molecular
mechanics force fields that describe how atoms interact within
a variety of settings, and both the software and parameters are
under continuous development.

AMBER has a number of unique characteristics that set it
apart from traditional software engineering projects. Firstly,
the project has been under continuous development since its
original publication in 1981 [3] by the late Peter Kollman. The
very first versions of AMBER were written on punch cards,
and evidence of this history can still be found in some of the
code. For example, some of the input file formats for AMBER
are still described in terms of cards and namelists, a fact that
can be quite confusing for new users.

The code itself reflects AMBER’s extensive development
history– as with many CSE codes, the majority of the simula-
tion code is in FORTRAN. Although the language is no longer
commonly used in software engineering, it remains popular in
the CSE community due to the complexity of transitioning
existing code, and the efficiency and easy ability to optimize
and parallelize FORTRAN code. It should be noted that most

978-1-4673-6261-0/13

c� 2013 IEEE

SE-CSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE.

c� 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

68

new code added to AMBER tends to be in more commonly
used languages, with C, C++, CUDA and Python being typical.
The integration of multiple languages into a single set of
executables adds to the complexity of building AMBER.

AMBER developers are an extremely geographically and
academically diverse group, and are spread across the US and
abroad with limited opportunities for direct communication.
Currently the principal developers are at Rutgers University,
the University of Utah, University of Florida, SUNY-Stony
Brook, and UC San Diego, with many other research institu-
tions also contributing.

The developers have a diverse set of research interests and
typically contribute to the code as it relates to their research
rather than considering code development to be their primary
focus. This approach is extremely common in the CSE world
where researchers often have neither the time nor funding to
focus solely on software development.

Changes to the AMBER development process have histor-
ically been introduced by a small number of developers who
implement a new idea and present it to the others, who then
decide whether to incorporate it into the development process.
The project is usually swift to adopt new practices– for
example, when several developers started using git and demon-
strated the utility of version control, the AMBER project as a
whole quickly adopted it for the official development tree.

Since each developer works primarily on one program
or aspect of a program, the AMBER package is extremely
modular and the package is better described as a toolset
rather than a single integrated simulation code. As a result of
diverse contributions, AMBER has expanded from its original
incarnation as a preparation and simulation program and now
supports force field development, trajectory analysis, and a
wide variety of simulation types across all major hardware
from a single laptop to the most powerful supercomputers.

The AMBER developers are focused on keeping AMBER
true to its original ideals of efficiency, accuracy, and func-
tionality under a huge variety of architectures and hardware.
The range of hardware on which researchers run the AMBER
software is staggering. It has to run on all major architectures
including less commonly encountered hardware such as IBM
Power Systems, Blue Gene, Cray, and ARM processors. It
additionally exploits GPUs to accelerate computation when
possible [4] and uses MPI for parallel processing. In its 32
years of existence the AMBER software has undoubtedly been
run on every single major supercomputer and every version of
micro or vector processor.

The program therefore is compiled from source by the user
during the install process. This links with the need to support
all major compilers including Intel, GNU, PGI, open64, Cray,
IBM, and Solaris, and for support of the OpenMP and MPI
toolkits for parallelization. Much of the simulation code now
also exploits graphics processing units (GPUs) using CUDA,
allowing for extremely cost- and time-efficient simulations but
at the expense of even more complex cross compilation.

III. PROBLEMS

Since each developer focuses primarily on their own code,
the functionality of AMBER as a whole can often be ne-
glected. AMBER developers meet once a year to discuss the
future of the code, but these meetings are not sufficient for
addressing the often frequent problems that can arise in such
a large project. Many developers do not have the time or the
opportunity to extensively test their code for every compiler
that AMBER can use, and often do not have access to some
of the high-end GPUs and other exotic hardware that AMBER
supports.

The code is also highly complex, and as such changes in
one part of the simulation code may have side effects that are
not caught in an individual’s examination of their own work.
This is especially true for the parallel and GPU-accelerated
builds, as errors such as race conditions are often subtle and
difficult to replicate or identify. These errors will not result
in a program crash or error message, may occur infrequently,
and manifest as extremely subtle differences in results.

Finally, the modular nature of AMBER requires a compli-
cated build process where correct dependency resolution is
critical. Developers who alter the build order or add their
code are often unfamiliar with GNU Makefiles, especially at
the level of complexity as AMBER’s. Dependency problems
often are silent unless a full recompilation is made, and errors
with “make clean” can result in a build that appears to work
on a developer’s machine but will fail on a user’s first install.

Overall these project characteristics can result in errors that
are reported by end users using hardware or compilers that
have not been extensively tested as part of development. As a
result, those researchers can lose precious computer time and
developers must expend considerable effort in correspondence
to identify the exact cause of the error. Debugging the problem
can take even more of a developer’s time, especially if the error
is in code that had been written a long time ago.

IV. SOLUTION: CONTINUOUS INTEGRATION

The goal of this project was to solve the problem of
maintaining quality and accuracy over a variety of build com-
binations by developing a comprehensive build and test suite
to verify all supported compiler and parallel combinations,
build dependencies, and correctness of test cases. The system
is available to developers along with a commit history to
the central repository so that developers can identify if their
commit broke a test case or if it doesn’t work with a certain
compiler (that they might not have access to on their personal
machine). The system allows for easy identification of tests
that are failing due to floating point rounding errors versus
ones that are legitimately failing so that test tolerances can be
adjusted to avoid false positives.

The software engineering practice of continuous integration
was adapted to create a common build and test environment
that unifies all the developers’ code into one test environment
so that errors can be seen on a commit by commit basis. Martin
Fowler identifies several elements of a proper continuous
integration environment [5] that either already exist or have

69

been adapted into the AMBER development environment
as part of this project. This section will identify each of
these principles, describe how it has been incorporated into
AMBER development, and discuss its applicability to other
CSE projects.

A. Maintain a Single Source Repository

One important aspect of continuous integration is to main-
tain a common source repository that all developers have
access to. This prevents divergence in the code that leads to
difficult to resolve conflicts close to release, and allows all
developers to monitor what each are working on.

The current AMBER development process maintains a
common Git repository that all developers add their code to
once they are comfortable sharing it with others. The two
main branches are of the current release with patches, and
a development branch containing code that is robust enough
to share but may not be fully ready to release. Each developer
commits code incrementally to their local branch, which can
be hosted on their local machine or alternatively on the
central Git server which conducts comprehensive backups and
allows simple sharing of such development branches. When
ready they push to the master trunk. This repository typically
receives upwards of ten commits per day.

The repository contains everything necessary to build and
test a fully-functional version of AMBER as a development
or release version. When it comes time for public release of
a new version, a build script packages up the contents of the
repository trunk, tagged for the release into a tar file that is
downloadable by users.

B. Automate the Build

As projects get larger, some sort of automated build process
is necessary so that developers do not have to spend time
typing in commands to compile each source file on its own. As
dependencies grow, the use of automated build software such
as Ant or Make is necessary in order to resolve them and
maintain efficiency. An automated build process also allows
for easier support for many build options, such as conditional
compilation of CUDA code on systems with GPUs, etc.

AMBER uses GNU Make to automate its build process.
Users run a configure script that generates variables appro-
priate to their installation, compiler, and desired options, and
then make does the rest. There is a root-level Makefile that
calls on sub-Makefiles in each folder containing a program.
In order to add a new program to AMBER, a developer need
only write a sub-Makefile for their program and call it in the
right place in the build hierarchy.

The history of AMBER development, complex nature of
the code and the variety of systems on which it must be
run prevent the project from using automated build systems
like CMake, which may not be available on uncommon
architectures and can fail at integrating AMBER code written
in many languages into a unified set of executables under a
variety of build conditions.

C. Make the Build Self-testing
All software needs testing to find and eliminate all types

of bug. This can include algorithmic and logical bugs as well
as more complex race conditions in parallel execution and
also bugs in the machine code originating from flaws in the
compiler’s logic. Testing is so critical to the success of a
project that validation needs to be automated and integral to
the build process, so that developers do not have to remember
to manually test certain aspects of the code. It is much more
efficient for developers to write tests before or immediately
after writing code than it is to add tests to an already released
project. In addition, as the complexity of a project grows,
the possibility of an error-producing interaction between two
program components grows exponentially.

Testing philosophies popular in software engineering, such
as Test Driven Development or Extreme Programming, are
often difficult to implement in CSE applications, as the desired
behavior of code is often unknown. This arises because the
code is often written to solve research problems for which
the ultimate answer expected from the code is unknown and
the results are highly sensitive to statistical convergence and
sampling issues. Nonetheless, rigorous validation is extremely
important for CSE codes, as the validity of all research
conducted with the code depends on it.

AMBER adopts the philosophy that results should be both
valid and reproducible, and developers construct their tests
accordingly. Once code is complete and has been verified
for correctness by the developer, the correct output (with a
set random seed, if the program uses the random number
generator) will be saved. Tests will run the program (with
the same random seed) and compare the output to the saved
one. A tolerance value is set to account for floating point
rounding differences that arise from different architectures and
environments, and if the difference between the two outputs
is within the tolerance, the test passes. Otherwise, it fails.

AMBER’s hierarchical build system can be used to run all
of the tests that each developer has provided. A “test” target
exists in the main AMBER Makefile, and when invoked runs
a series of sub-test targets which ultimately run “make test” in
each sub-directory of the test tree. When creating the Makefile
for a subset of code, the developer will also incorporate the
test target to run all of the tests and check the output using a
variant of diff maintained by the AMBER developers.

D. Everyone Commits as Often as Possible
Continuous integration practices encourage each developer

to add their code to the central repository at least once per
day. This approach is beneficial to avoid merge conflicts when
two developers have unknowingly been modifying the same
part of the code for a long period of time, and allows better
communication as to what each person is working on.

AMBER’s development process does not mandate commit
frequencies, but due to the nature of the development process
commits typically occur very frequently and without conflict.
Merge conflicts are rare, as each developer typically stays
focused on a subset of the code, and will only edit other

70

subsections in a minor way to fix small errors, or with
permission and collaboration. Programming is also sporadic
on the part of many researchers, since they typically use
AMBER in a research capacity the majority of the time and
conduct development work only occasionally. To avoid local
branches becoming substantially out of date each developer
is encouraged to create a new branch when starting work
on a new project and to pull and merge with the master as
frequently as possible.

E. Every Commit Should Result in a Build on an Integration
Machine

The most important component of continuous integration
involves building and testing the code on a dedicated machine
or group of machines that frequently reports its status to
all the developers. This enables code to be automatically
compiled with all combinations of options, and the tests may
be monitored so that the effects of each individual commit
are evident nearly immediately, rather than having to unravel
which commit is responsible for a particular error.

There are many available implementations of continuous
integration servers, including Buildbot [6], Jenkins [7], Cruise
Control [8], Automated Build Studio [9], Hudson [10], and
many more.

The AMBER project now uses Thoughtworks’ Cruise
Control continuous integration server to conduct automated
building and testing in an easily extensible manner. Although
difficulties were encountered in adapting the software to fit
the broad needs of the AMBER project (see section V), the
introduction of the server has helped simplify debugging and
has resulted in numerous improvements to the build and tests.

F. Keep the Build Fast
Continuous integration is designed to allow developers to

quickly see the results of their commits, and without near-
immediate results the process can quickly fall apart. If the
overall compilation and test process takes a long time (Fowler
suggests 10 minutes as a cutoff), targets that conduct a
quick subset of the tests should be added to give developers
immediate feedback on their code.

In order to keep build and test times to a minimum, a
dedicated machine was built to serve as a continuous integra-
tion server with hardware selected specifically for efficiency.
Solid state drives were RAIDed to provide greater than 800
MB/sec of I/O and to allow for a number of targets to be
run simultaneously without the I/O throttling that can occur
with spinning disks. A high-end M2090 GPU was selected,
and an 8-core processor at a high clock rate of 3.8 GHz was
used to minimize the time for executing serial aspects of the
build process. This machine cost approximately $3200, with
the most expensive component being the $2000 GPU.

The compilation time for one of the AMBER build targets
is approximately eight to ten minutes on this machine, but the
timings for the tests vary from less than ten minutes to over
half an hour, depending on whether the tests are for serial,
parallel, or GPU code. Since the purpose of our continuous

integration server is to test as many combinations of serial,
parallel, and GPU code with various compilers, the server is
set up to allow multiple targets to be run at once to hasten the
completion of all of them. This is only possible due to the use
of solid-state disks.

CSE codes with long build times can create multiple con-
tinuous integration targets with varying build times, so that
developers can get immediate feedback following a commit
at a basic level, followed by more detailed information later.
More in-depth tests can then be run pending the success of
the basic target to create a tiered system of targets that take
increasing time to run but provide greater coverage of the
application’s correctness. This is often referred to as a staged
build, build pipeline, or deployment pipeline in the software
engineering community. AMBER incorporates this idea by
building and conducting tests separately for each combination
of options– one target builds the parallel CUDA executables,
for example, instead of trying to build every combination of
options at once.

G. Test in a Clone of the Production Environment
Software engineering projects often feature a production

environment where software is run by the end user that can
be very different from the development or test environment.
The continuous integration principle of testing in a clone of
this production environment aids developers in finding errors
that may not be present on their machines.

This is especially true with applications that will run in con-
junction with a large database. Testing with smaller data sets
may not produce any errors, but in the final environment the
program may suffer catastrophic crashes. However, whether
or not this constraint is present for CSE codes is completely
dependent on the application. For AMBER and many other
simulation codes, the data is generated by the application and
then passed to others for analysis, rendering this principle
inapplicable. However, for other projects, this may be a crucial
part of the testing process.

The AMBER tests try to reflect real-life usage as much as
possible, using real input data rather than contrived examples.
As a result, the project contains over 1 GB of data in the
test cases alone. Developers also test different compilers,
compiler versions, vector math and system libraries to mimic
the different Linux environments on user machines, and our
ultimate goal is to use virtualization to test all major operating
systems.

H. Simplify Executable Distribution
Often during the development process there are a variety

of builds of the current executable– development, debug,
stable release, etc. Finding the most recent product for a
demonstration or release should be simple to both users and
developers. It should also be simple for users to identify if
their software is out of date and, if desired, easily update it to
the latest version.

AMBER’s releases are often patched several times, and
many of these patches correct problems that may lead to

71

erroneous simulation or offer significant speed improvements
over the unpatched version. It is therefore crucial that users
have the latest version and can easily patch their software. We
ensure that users are aware of new patches by encouraging
subscription to a mailing list where patches are announced.

Distribution of updates is of critical importance to CSE
projects, as the accuracy of users’ results can depend on
it. Developers should implement some sort of checking for
updates automatically and ensure that users can quickly and
easily update to the latest version of the program.

The patch process for AMBER 12 and AmberTools12 has
been greatly simplified since previous years with the addition
of an automatic patching script. When users prepare for
compilation by running the configure script, the patcher is
automatically invoked and will check the AMBER website
for project updates then retrieve and apply the latest patches
if necessary.

I. Development Should Be Communicative and Collaborative
Continuous integration aims to simplify the development

process by increasing transparency of results and simplifying
developers’ access to information regarding the state of the
code. Using a server to conduct automated builds allows
developers to see who is committing and whose commits cause
errors or significantly impact the speed of the program.

Good communication is very important to CSE projects,
especially so for those that are distributed over a variety
of institutions. Continuous integration practices allow geo-
graphically dispersed teams to work more closely with each
other, and constant feedback on which parts of the code
colleagues are developing allows researchers to more clearly
see opportunities for contribution.

The addition of the Cruise Control server has been ex-
tremely beneficial to AMBER development in this aspect as
previously developers were unable to see the immediate effects
of their commits on every compiler and option. This would
often lead to confusion over what broke the build, and overall
the development process was much more opaque.

J. Automate Deployment
Deployment refers to the processes by which software

becomes usable on a new machine, be it compilation, installa-
tion, or updating. Efficient, automated deployment is a focus
of continuous integration as without an efficient installation
process, automated building and testing is impossible.

Deployment of CSE codes can range from trivial to ex-
tremely complex depending on the application and system.
For AMBER, users need only run the configure script, install
dependencies if necessary, and then run Make to obtain a fully
functional system in the time it takes to make a large cup of
coffee. Other CSE codes may need a more involved process to
resolve dependencies and make executables accessible to the
user.

Rolling deployments offer the opportunity for complicated
installations to be completed one step at a time while checking
for errors. The concept is used frequently for websites with a

large user base, where a feature is rolled out to a subset of
users at a time, or on supercomputers where a sysadmin will
deploy software to one node at a time.

In general, the installation process should require as little
input from the user as possible– shell variables should export
themselves, dependencies should be automatically checked
for, etc. Often users of a CSE code may be unfamiliar with
Linux and are unprepared for an involved series of deployment
steps, and may be confounded by cryptic errors. Complicated
installation processes are also difficult to automate on a contin-
uous integration server, and complicate testing by developers
themselves.

V. IMPLEMENTATION DETAILS

Continuous integration is a principle that exists mainly
within the mainstream software engineering community, and
as such can be difficult to apply to CSE projects. The imple-
mentation of an automated build and test server is perhaps the
most important step of the process, and unfortunately the most
challenging when it comes to scientific applications.

Out of the 28 most common available continuous integration
servers, 60% were under a proprietary license, making the
server difficult to modify and potentially unaffordable on a
limited research budget. Only half of the remaining servers
supported building from the command line, and even fewer al-
lowed success or failure notifications more complex than an e-
mail. AMBER uses the Cruise Control continuous integration
server, which is primarily aimed at Java applications but offers
an elegant web dashboard that displays useful information
about each build target. The choice of Cruise Control was
made with the AMBER build and test environment in mind
although it is not the only logical choice but one of several
possibilities. For example, the molecular dynamics project
Gromacs [11] has had considerable success with the Jenkins
[7] continuous integration environment.

While being a good choice, considerable customization and
modification of Cruise Control was required to match the
needs of the AMBER developers. Targets for the AMBER
builds and tests were defined using Apache Ant scripts, which
are an XML format that is primarily aimed at compilation
of Java bytecode but also provides the ability to execute
arbitrary commands. Each build script runs configure with the
appropriate flags for the target, then executes “make install”.
Any errors in this process cause the build to be reported as
failing.

Build targets were created for all possible combinations
of serial, parallel, CUDA serial, and CUDA parallel with
the GNU and Intel compilers for Amber and AmberTools.
In addition, targets were created for various builds to test
building in parallel with different job counts, executing “make
-jX” where X is typically 1 to 16. This checks for correct
dependencies in the Makefile and provides a measure of the
performance improvements that building in parallel can bring.

Separate test targets were created for each of the Amber
builds, since the Amber tests include those for AmberTools.
The target is triggered on successful completion of its parent

72

Fig. 1. Graphical display of time taken to complete the test targets aided
developers in finding a segmentation fault error in one of the main simulation
programs. The sharp drop in time taken in near the right of the graph
corresponds to a build where many of the tests suddenly crashed. The red
numbers indicate the number of failed tests during each attempt to run the
target.

build target, and runs make test in the source directory. A
script is then run that collects all of the diff files from failed
tests and lists tests that crashed to provide an easy review of
results in the web interface.

The build and test targets check the latest AMBER code
for compilation and correctness, but efficiency is also of
paramount importance to the developers. Although collection
and display of timing information is not supported by Cruise
Control, it was extended to provide this functionality.

Time stamps are created before and after running the tests,
and these values are passed to a script that subtracts them
and appends this value to a data file. The graphing program
gnuplot [12] is invoked to create a graph of these values, and
this is made available on the web interface so that developers
can have a visual representation of how the latest commits
have affected program speed.

This graphing functionality has been extremely useful to
the AMBER developers, who in addition to gaining timing
information now have data about the number of failed tests in
an easily accessible format. For example, the sharp decrease in
time shown in the middle of the graph in Fig. 1 corresponds
to a commit that caused sander (one of the main AMBER
simulation programs) to crash, and therefore many of the tests
instantly failed as well.

Finally, “artifacts,” or files generated by each build, are
saved and made available via the dashboard so developers
can access logs and test failure information without having
to replicate the work done by the testing machine.

The Cruise Control web interface required considerable
modifications to meet the needs of this CSE project. The
interface by default depicts small colored squares to indicate
whether or not a target is succeeding or failing and it is
necessary to click on each square to identify which target it is.
To simplify easy identification of problems, the squares were
turned into rectangles with the project name written inside

Fig. 2. Many improvements were made to the Cruise Control web interface,
including making project names easily viewable in the main build window.
The top shows how targets are represented with colored squares by default,
and the bottom shows the modified interface used in the AMBER Cruise
Control dashboard.

as shown in Fig. 2. Showing targets as boxes is useful for
software engineering applications of continuous integration,
where all build targets need to be quickly identified as passing
or failing and the specifics of the targets are less important.
However for CSE applications the specific context in which
failure occurs is of critical importance, as the difference
between a serial and a parallel target can be a considerable
amount of code.

VI. CONCLUSION

Implementation of continuous integration principles can be
extremely beneficial to CSE projects. They offer considerable
opportunities to foster unity and collaboration among diverse
groups of developers, and the automated build and testing
environment greatly simplifies the debugging process.

The cost of implementing these techniques is fairly low,
with the most expensive component being the dedicated build
machine at approximately $3000. Training costs may be kept
to a minimum by presenting the system setup as a project for
a student or intern.

The majority of continuous integration software is designed
for more traditional software engineering applications, and
are difficult to adapt to the significantly different needs of
CSE projects. Extensive modifications need to be made to
these systems to provide necessary information to developers,
and the amount of effort needed to implement a continuous
integration server may deter CSE projects from adopting the
techniques.

Future goals for AMBER’s continuous integration environ-
ment include the creation of a benchmarking server to track
the performance of serial, parallel, GPU serial, and GPU
parallel AMBER targets on standard benchmarks, and the
implementation of virtual machines to more thoroughly test
different build environments.

Overall, using continuous integration software in the AM-
BER project has proved to be worth the initial efforts, and
while we continue to look to improve the usefulness and ro-
bustness of the testing system, it has already been of significant
utility in accomplishing development goals and fostering unity.

73

ACKNOWLEDGMENTS

This work was funded in part by the National Science Foun-
dation through the Scientific Software Innovations Institutes
Program - NSF SI2-SSE (NSF1047875 and NSF1148276)
grants to R.C.W and also by the University of California (UC
Lab 09-LR-06-117792) grant to R.C.W. The work was also
supported by a CUDA fellowship to R.C.W from NVIDIA
Inc.

REFERENCES

[1] R. Salomon-Ferrer, D. Case, and R. Walker, “An overview of the
Amber biomolecular simulation package,” WIREs Comput. Mol. Sci.,
2012. [Online]. Available: http://dx.doi.org/10.1002/wcms.1121

[2] D. Case, T. Darden, T. Cheatham, C. Simmerling, J. Wang, R. Duke,
R. Luo, R. Walker, W. Zhang, K. Merz, B. Roberts, S. Hayik,
A. Roitberg, G. Seabra, J. Swails, A. Goetz, I. Kolossváry, K. Wong,
F. Paesani, J. Vanicek, R. Wolf, J. Liu, X. Wu, S. Brozell, T. Stein-
brecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui,
D. Roe, D. Mathews, M. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin,
T. Luchko, S. Gusarov, A. Kovalenko, and P. Kollman, “AMBER 12,”
2012.

[3] P. K. Weiner and P. A. Kollman, “Amber: Assisted model building with
energy refinement. a general program for modeling molecules and their
interactions,” Journal of Computational Chemistry, vol. 2, no. 3, pp.
287–303, 1981.

[4] A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand,
and R. C. Walker, “Routine microsecond molecular dynamics
simulations with AMBER on GPUs,” Journal of Chemical Theory and
Computation, vol. 8, no. 5, pp. 1542–1555, 2012. [Online]. Available:
http://pubs.acs.org/doi/abs/10.1021/ct200909j

[5] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works,
2006. [Online]. Available: http://www.thoughtworks.com/Continuous
Integration.pdf

[6] Buildbot. [Online]. Available: trac.buildbot.net
[7] Jenkins continuous integration. [Online]. Available: http://jenkins-ci.org
[8] Cruise Control. [Online]. Available: http://cruisecontrol.sourceforge.net
[9] Automated Build Studio. [Online]. Available:

http://smartbear.com/products/development-tools/build-management
[10] Hudson. [Online]. Available: http://hudson-ci.org
[11] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4:

Algorithms for highly efficient, load-balanced, and scalable molecular
simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3,
pp. 435–447, 2008.

[12] J. Racine, “Gnuplot 4.0: a portable interactive plotting utility,” Journal
of Applied Econometrics, vol. 21, no. 1, pp. 133–141, 2006.

74

