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a b s t r a c t

A new precision model is proposed for the acceleration of all-atom classical molecular dynamics
(MD) simulations on graphics processing units (GPUs). This precision model replaces double precision
arithmetic with fixed point integer arithmetic for the accumulation of force components as compared
to a previously introduced model that uses mixed single/double precision arithmetic. This significantly
boosts performance on modern GPU hardware without sacrificing numerical accuracy. We present an
implementation for NVIDIA GPUs of both generalized Born implicit solvent simulations as well as explicit
solvent simulations using the particlemesh Ewald (PME) algorithm for long-range electrostatics using this
precisionmodel. Tests demonstrate both the performance of this implementation as well as its numerical
stability for constant energy and constant temperature biomolecular MD as compared to a double
precision CPU implementation and double and mixed single/double precision GPU implementations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Powerful graphics processing units (GPUs) that deliver a high
peak performance of both integer and floating point arithmetics
are common components of desktop workstations and are becom-
ing increasingly ubiquitous as specialized accelerator hardware in
modern high-performance computing platforms [1]. The potential
of GPU hardware for an economically efficient acceleration of sci-
entific applications has long been realized [2,3] and mature imple-
mentations are available formolecular dynamics (MD) simulations
of condensed phase biomolecular systems providing capabilities to
researchers that can surpass traditional CPU-based implementa-
tions [4–9]. In order to achieve high performance on GPUs, how-
ever, it is mandatory to implement algorithms that are able to
exploit the specific hardware architecture of GPUs. In a recent
publication [9] we introduced a GPU implementation of the AM-
BER [10] PMEMD MD engine that employs mixed single/double
precision arithmetic (SPDP) to achieve maximum performance
while maintaining numerical stability for MD simulations that is
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comparable to the full double precision (DPDP) GPU and CPU im-
plementations of PMEMD.

Our original motivation behind the development of the SPDP
precisionmodel was driven by the fact that GPUs for the consumer
market have traditionally had single precision floating point
performance that outstrips double precision performance. In the
case of NVIDIA Fermi series GPUs, this was a ratio of between 8 to
1 (GTX580) and 2 to 1 (M2090). Our SPDP model was designed to
deliver optimum performance as long as this ratio was no worse
than 10 to 1. Unfortunately, with the release of the Kepler I series
of NVIDIA GPUs based on the GK104 chipset this performance ratio
is worse than 20 to 1 for both the consumer (GTX680/690) and
HPC (K10) cards. Thus,while the peak single precision performance
doubled (GTX680 vs GTX580), the computational throughput that
can be achievedwith the SPDP precisionmodel of the PMEMDGPU
implementation decreased by approximately 33%. This was due
almost entirely to the double precision performance decreasing by
approximately the same amount. In order to address this we have
revisited the need for double precision arithmetics with the aim to
replace it in a way that has no effect on simulation accuracy while
allowing us to fully exploit this new generation of GPU hardware
without adversely affecting performance on previous generation
hardware.

In this contribution we introduce a new precision model,
termed SPFP, that combines single precision with 64-bit fixed
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point integer arithmetic in place of double precision floating
point arithmetic. We present our implementation of the SPFP
precision model in the AMBER PMEMD MD engine for all-atom
classical MD using the AMBER [11] or CHARMM [12] pairwise
additive force fields for biomolecular simulations on CUDA [13]
enabled NVIDIA GPUs. We show that this implementation affords
numerical stability that is equivalent to the SPDP precision model,
both for generalized Born (GB) [14] implicit solvent simulations,
as well as explicit solvent simulations using the particle mesh
Ewald (PME) [15] algorithmwhile providing a considerably higher
computational throughput, in particular on the newNVIDIA Kepler
hardware such as the recently released GTX680 GPU. At the same
time this new precision model substantially reduces the memory
footprint by avoiding the need for accumulation buffers.

2. Technical details

For historical reasons all traditional CPU codes in AMBER
are written entirely using double precision (DP) floating point
arithmetic. For our GPU implementation of the AMBER MD engine
PMEMD we distinguish three precision models that differ in the
use of single precision (SP) and double precision floating point
arithmetic [9]. In the SPDP precision model the real-space and
PME contributions to the nonbonded forces are calculated in
SP arithmetic, but bonded terms and force accumulation of the
real-space part of the nonbonded forces are calculated in double
precision. Alternatively, everything is computed and accumulated
in single precision (SPSP) or double precision (DPDP). The SHAKE
algorithm [16,17] is implemented in DP for all precision models
to maintain numerical stability. The aim in developing the SPDP
model for the GPU implementation of PMEMD was to achieve
numerical stability during MD simulations equivalent to that of
traditional DP implementations but with a performance as close
to the SPSP model as possible.

Narumi et al. [18] studied the use of various tricks to
approximate double precision using combinations of single
precision floating point and integer arithmetic. Specifically, they
proposed the construction of a quasi double-precision structure
built from a 32-bit integer and a single precision float. This
approach provides approximately 48-bit floating point precision
without requiring double precision arithmetic at the cost of 5
single precision operations per extended addition and the use of
additional temporary registers. We initially investigated the use of
this approach to improve performance on GTX680 cards, however,
since this adds only approximately 2 significant figures to the force
accumulation step the effective precision is lower than in our SPDP
model. Themotivation behind the approach of Narumi et al. was to
provide increased precision at a time when GPUs supported only
single precision arithmetic.

All NVIDIA GPUs since the release of the Tesla C1060 have
supported double precision and more importantly the ability to
directly cast a 32-bit float to a 64-bit integer. This functionality
coupled with our desire to maintain the precision of our SPDP
model motivated us to instead develop a new precision model,
termed SPFP, that is equivalent to the SPDP precision model but
replaces all DP arithmetic with 64-bit fixed point (FP) integer
arithmetic. In addition the PME forces resulting from the reciprocal
sum charge grid are now summed in 64-bit FP integer arithmetic
as opposed to SP floating point arithmetic in the SPDP model.

2.1. Fixed precision

The relative precision of a number x expressed as a floating
point value fln(x) with n bits for the significand is given as fln(x) − x

x

 < 2−n. (1)

For an IEEE754 double precision number with 53 bits for the
significand including a hidden bit this corresponds to a relative
precision of ≈10−16. This precision and the dynamic range offered
by 64-bit double precision floating point numbers is not required
for typical MD simulations. For the reasons discussed below we
assert that fixed point 64-bit integer representations Qm.f with an
appropriate choice of magnitude bitsm and fractional bits f can be
used instead.

Specifically our SPFP precision model replaces the double
precision force accumulation with Q24.40 fixed point integer
accumulation while energy and virial accumulation is carried
out using Q34.30 fixed point integers. This provides 7 significant
figures to the left of the radix point and 12 to the right for the
forces. Given that the forces typically never exceed numerical
values of 100.0 in internal units this provides more than enough
range for all situations that would be encountered in a stable MD
simulation. While the forces are vectors of length 3×Natom, where
Natom is the number of atoms, the energy is scalar with only a
single accumulator. This means that for a large system the energy
values could overflow a Q24.40 fixed point accumulator. However,
energies have no effect on the trajectory and are typically only
written to 4 decimal places and thus we use Q34.30 FP arithmetic
which provides approximately 10 significant figures to the left of
the radix point and 9 to the right. C/CUDA/PTX assembly code for
scaling the 32-bit SP force and energy components and conversion
to 64-bit FP representation is given in Fig. 1.

A key component of our original implementation is determin-
istic operation. This was achieved by using output buffers for each
force vector component which allowed accumulation to be carried
out in the same order even when running in parallel. We have re-
tained this in our SPFP implementation but with significant mem-
ory savings by exploiting the fact that while floating-point math
is not associative, integer math is. One can therefore use 64-bit
atomic operations to accumulate the forces and the reciprocal sum
charge grid in a deterministic fashion. The gain in doing this on
the Fermi GPUs (for example GTX580) is marginal since atomic
operations are not particularly fast. However, the GTX680 (Kepler,
GK104) series of GPUs includes atomic operation hardware that is
approximately 3x faster than the previous generation. This makes
the use of atomic operations attractive and ultimately provides a
speed benefit over the Fermi series GPUs. Beyond the introduction
of fixed point accumulation the code is otherwise the same with
the exception that the reciprocal sum charge grid is now summed
in Q24.40 fixed precision as opposed to 32-bit floating point.
This ultimately provides an additional improvement in achievable
precision.

2.2. Memory requirements

The system size limitation of our SPDP (and DPDP) precision
model implementations is dominated by the memory require-
ments of the output buffers for the real-space nonbonded inter-
actions. In the case of GB simulations that do not use a cutoff for
real-space nonbonded interactions, a total ofN×(N/W+1) output
buffers are required to achieve high computational performance
while avoiding race conditions [9], where N is the total number of
atoms andW is the warp size1. Much larger numbers of atoms can
be handled with the PME implementation [19] since long-range
electrostatics beyond a cutoff are handledwith the PME algorithm.
Hence, the number of real-space nonbonded interactions for each

1 A warp is a subgroup of a CUDA thread block containing 32 threads that
execute synchronously [13]. The size of awarp is subject to changewithoutwarning
between hardware generations.
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Fig. 1. C/CUDA/PTX assembly code for scaling 32-bit single precision force components f and energy components e to Q24.40 and Q34.30 fixed precision representations
f_fp and e_fp, respectively, as implemented in the CUDA version of the AMBER MD engine PMEMD. cvt.rni.s64.f32 casts a floating-point value to a 64-bit signed
integer, rounding to the nearest integer. Inline PTX assembly code was required to precisely describe the intent of this type conversion.

Table 1
Approximate maximum atom counts that can be treated with the GPU implementation of GB implicit solvent and PME explicit solvent simulations in a development version
of AMBER 13 using the SPDP and SPFP precision models. Test systems are droplets and cubic boxes of TIP3P water molecules, respectively (for details on the simulations see
the text). Error-correction code (ECC) was switched off on the Tesla card.

GPU GB (max atoms) PME (max atoms)
Type Memory (GB) SPDP SPFP SPDP SPFP

GTX580 3.0 39,250 1,195,000 1,060,000 1,240,000
Tesla M2090 6.0 54,000 1,740,000 2,230,000 2,680,000
GTX680 2.0 32,000 960,000 710,000 920,000

atom is constant for PME and thememory requirement scales only
linearly instead of quadratically with the number of atoms.

Our implementation of the SPFP precision model does not
use these output buffers. Instead, we are using 64-bit atomic
operations to accumulate the forces and thus do not require the
accumulation buffers since the order of summation no longer leads
to rounding differences. In this way we preserve deterministic
operation butwithout the excessivememory overhead.We exploit
the hardware support of atomic operations provided by the
GPU. This allows us to use a fire and forget approach to the
accumulations.

An added benefit to this approach is that we now also have
deterministic operation in parallel irrespective of the number of
MPI tasks. Previously deterministic operationwas only guaranteed
for a constant number ofMPI tasks using a static allocation ofwork.
Our SPFP approach allows work to be dynamically load balanced
between MPI tasks but with deterministic execution still being
preserved. A potential downside of this approach is that the system
size is nowultimately limited by the fixed precision. This limitation
arises because the energy increases linearly with the number of
atoms and eventually will overflow the Q34.30 fixed precision
accumulator. The potential energy per atom in simulations with
commonly used AMBER force fields typically does not exceed 10
kcal/mol. With approximately 10 significant figures to the left of
the radix point, this means that it is safe to assume that the limit
for overflow is well past 10 million atoms which is sufficient to
cover all simulations currently run with the AMBER software.

The software base used for all simulations in this work was
a development version of AMBER 13. The executables were built
under the RedHat Enterprise Linux 6 operating system with Intel
compiler version 11.1.069 and the NVIDIA CUDA compiler version
4.2. The performance testswere run onmachines equippedwith an
8-core AMD FX-8150 processor clocked at 3.6GHz with the GPU
cards connected to a PCIe x16 slot and using the NVIDIA Linux
Driver version 295.41.

Table 1 shows the maximum system size that can be treated
with the GPU implementation using the SPDP and SPFP precision
models for GB and PME simulations as a function of GPU

hardware. Test systems are droplets and cubic boxes of TIP3Pwater
molecules, respectively. All simulations were performed without
temperature control using a time step of 2 fs and the SHAKE
algorithm to constrain bonds to hydrogen atoms. The Hawkins,
Cramer, Truhlar GB model [20] was used without cutoff for the
nonbonded interactions and a cutoff value of 15Å for GB radii. For
the PME simulations, the default cutoff of 8Å was used for the
nonbonded interactions.

For GB simulations, the SPFP implementation effectively
removes the system size limitation due to available device
memory. Simulations of approximately one million atoms become
possible with only 2 gigabyte (GB) of GPU memory. Meaningful
simulations of such large systems, however, will require hundreds
of nanoseconds of simulation time or more to provide for proper
sampling. Future improvements will have to focus on further
speedups to provide the corresponding computational throughput.

In the case of PME simulations the difference inmaximumatom
counts that can be treatedwith the different GPU implementations
is not as dramatic as is the case for GB simulations. This is because
the number of nonbonded interactions that are treated in real-
space (within a pre-set cutoff) scales linearly with the system size
as opposed to quadratic. Over 900,000 atoms can be handled with
memory as low as 2 GB (GTX680) and more than 2,600,000 atoms
if 6 GB of memory is available (M2090).

2.3. Performance

Table 2 shows the performance in terms of computational
throughput that can be achieved with the SPDP, SPFP as well as
DPDP precision models as a function of GPU hardware. An implicit
solvent GB simulation of apo-myoglobin (2492 atoms) and an
explicit solvent PME simulation of dihydrofolate reductase in a
rectangular box of TIP3P [21] water atoms (DHFR, 23,558 atoms
including solvent) using the ff99SB [22] version of the AMBER force
field were chosen as representative examples of typical research
scenarios. Details of the simulations are as described above for the
water droplets/boxes. Input files for these simulations are provided
in the Supporting Information.
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Table 2
Throughput timings (ns/d) for AMBER GB simulations of apo-myoglobin (2492
atoms) and AMBER PME simulations of DHFR (23,558 atoms) with a time step of
2 fs using the serial GPU version with different precision models. For details on the
simulations and the hardware and software stack, see text.

GB (apo-myoglobin) PME (DHFR)
Precision model SPFP SPDP DPDP SPFP SPDP DPDP

GTX580 106.2 94.7 17.0 54.8 53.0 10.0
M2090 89.5 84.8 28.7 46.6 46.2 16.2
GTX680 155.8 85.0 11.4 74.4 45.9 6.6

We first notice that the SPFP precision model outperforms the
SPDP and DPDP precision models on all tested hardware, both
for GB and PME simulations. The SPFP precision model is able
to fully exploit the higher single precision performance of the
new NVIDIA Kepler I (GTX680) hardware while both the SPDP
and in particular the DPDP precision model suffer from a drop in
performance on this hardware as compared to the older Fermi
hardware (GTX580, M2090). Compared to the SPDP precision
model, the computational throughput that can be achieved with
the SPFPprecisionmodel increases by up to 12%on Fermi hardware
and 83% and 62% for GB and PME simulations, respectively, on
Kepler I hardware. We obtain benchmark throughputs of nearly
156ns/d for GB simulations of apo-myoglobin and 75 ns/d for PME
simulations of DHFR.

3. Numerical stability

In what follows we will demonstrate the numerical accuracy
of our SPFP GPU implementation in comparison to the SPDP GPU
implementation and the full double precision GPU (DPDP) and CPU
implementations. In addition to apo-myoglobin described above,
we have used TRPCage [23] (304 atoms), ubiquitin [24,25] (1231
atoms, PDB code 1UBQ), and nucleosome (25,095 atoms, PDB code
1KX5) as test systems for implicit solvent GB simulations and
dihydrofolate reductase (DHFR, 23,558 atoms), FactorIX (90,906
atoms), Cellulose (408,576 atoms) and the satellite tobaccomosaic
virus (STMV, 1,066,846 atoms) as test systems for explicit solvent
PME simulations. Input files for all simulations are provided in the
Supporting Information.

3.1. Force errors

Tables 3 and 4 show the effect of the numerical precision
model on the accuracy of force calculations as compared to the
CPU implementation as the reference precision model for implicit
solventGB and explicit solvent PME calculations, respectively,with
settings as described above for the water droplets/boxes.

For GB simulations, the DPDP model matches the reference
forces very closely with maximum deviations not exceeding
10−7 kcal/(molÅ) and root-mean-square (RMS) deviations not
exceeding 10−8 kcal/(molÅ), even for systems as large as
nucleosome. These deviations are entirely due to the different
order of execution of the floating point operations in the CPU
and GPU implementations. The forces obtained from the SPFP
precisionmodel showdeviations that aremuch larger but identical
to the SPDP precision model. For GB simulations we have already
shown [9] that these errors are sufficiently small such that the
SPDP GPU implementation generates trajectories with numerical
stability that is equivalent to the CPU implementation. It is thus to
be expected that numerically stable simulations are also possible
with the SPFP precision model.

We observe similar force errors for explicit solvent PME
simulations. With the exception of FactorIX, maximum deviations
with respect to the reference CPU implementation do not exceed
10−7 kcal/(molÅ) and RMS deviations do not exceed 10−8

kcal/(molÅ). The deviations for FactorIX are slightly higher,
however these can be reduced by increasing the FFT grid
dimensions from their default value (not shown). The force errors
of the SPFP precision model and the SPDP precision model are
identical, consistently small and comparable to the deviations of
the GB forces. A thorough analysis showing that numerically stable
MD simulations using the PME algorithm are possible with the
SPDP and SPFP precision models will be presented elsewhere [19].

3.2. Energy conservation

A numerically stable implementation of MD should be able to
conserve energy during constant energy simulations. To this end
we have performed constant energy MD simulations of TRPCage
(100ns), ubiquitin (50ns) and apo-myoglobin (20ns) after an

Table 3
Deviations of forces (in kcal/(mol Å)) of the AMBER PMEMD GPU implementation using different precision models for GB implicit solvent simulations as compared to
reference values obtained with the CPU implementation.

Precision model TRPCage (304 atoms) ubiquitin (1231 atoms) apo-myoglobin (2492 atoms) nucleosome (25,095 atoms)

max deviation
SPFP 5.6 × 10−5 3.7 × 10−4 1.6 × 10−4 1.1 × 10−3

SPDP 5.6 × 10−5 3.7 × 10−4 1.6 × 10−4 1.1 × 10−3

DPDP 1.1 × 10−8 7.3 × 10−8 3.4 × 10−8 8.0 × 10−8

RMS deviation
SPFP 7.0 × 10−6 1.5 × 10−5 8.1 × 10−6 3.0 × 10−5

SPDP 7.0 × 10−6 1.5 × 10−5 8.1 × 10−6 3.0 × 10−5

DPDP 1.5 × 10−9 3.6 × 10−9 2.6 × 10−9 3.2 × 10−9

Table 4
Deviations of forces (in kcal/(mol Å)) of the AMBER PMEMD GPU implementation using different precision models for PME explicit solvent simulations as compared to
reference values obtained with the CPU implementation.

Precision model DHFR (23,558 atoms) FactorIX (90,906 atoms) Cellulose (408,576 atoms) STMV (1,066,846 atoms)

max deviation
SPFP 3.4 × 10−4 2.2 × 10−3 1.9 × 10−3 4.0 × 10−3

SPDP 3.4 × 10−4 2.2 × 10−3 1.9 × 10−3 4.0 × 10−3

DPDP 6.0 × 10−8 2.1 × 10−6 4.6 × 10−8 9.4 × 10−8

RMS deviation
SPFP 2.3 × 10−5 1.2 × 10−4 7.8 × 10−5 1.3 × 10−4

SPDP 2.3 × 10−5 1.2 × 10−4 7.8 × 10−5 1.3 × 10−4

DPDP 1.5 × 10−9 2.1 × 10−7 1.3 × 10−9 2.1 × 10−9
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Table 5
Energy drifts per degree of freedom (kT/ns/dof) from GB implicit solvent
simulations of 100ns (TRPCage), 50ns (ubiquitin) and 20ns (apo-Myoglobin). The
SHAKE algorithm to constrain bond lengths to hydrogen atoms was used for a time
step of 2.0 fs, no constraints were used for smaller time steps.

Time step 0.5 fs 1.0 fs 2.0 fs

TRPCage (304 atoms)
CPU 0.000006 0.000066 0.000355
GPU (DPDP) 0.000012 0.000082 0.000382
GPU (SPDP) 0.000003 0.000070 0.000222
GPU (SPFP) 0.000011 0.000066 0.000355
ubiquitin (1231 atoms)
CPU 0.000004 0.000011 −0.000216
GPU (DPDP) 0.000001 0.000006 −0.000247
GPU (SPDP) 0.000003 0.000030 −0.000165
GPU (SPFP) −0.000003 0.000006 −0.000350
apo-myoglobin (2492 atoms)
CPU 0.000012 0.000094 0.000416
GPU (DPDP) −0.000004 0.000117 0.000290
GPU (SPDP) 0.000019 0.000185 0.000139
GPU (SPFP) −0.000004 0.000122 0.000254

initial equilibration for 1ns at 300K using Langevin dynamics.
Details of the simulations are as described above for the water
droplets/boxes. The center of mass motion was removed before
starting the constant energy runs. We investigated simulations
using time steps of 0.5 fs and 1.0 fs without constraints as well as
a time step of 2.0 fs with bonds to hydrogen atoms constrained
using the SHAKE algorithm with a relative geometrical tolerance
of 10−6 Å. We restrict ourselves to an analysis of the SPFP
precisionmodel in comparison to published results [9] for the SPDP
and DPDP precision models as well as the double precision CPU
implementation for implicit solvent GB simulations. Input files for
these simulations are provided in the Supporting Information. A
detailed discussion of results for explicit solvent PME simulations
are presented in another publication [19].

Table 5 summarizes the energy drifts in kT per degree of
freedom (dof) while Fig. 2 shows a plot of the total energy for
the trajectories with the different precision models at a time
step of 0.5 fs. Plots for the larger time steps are shown in the
Supporting Information. The SPFP precision model is able to
conserve energy to the same degree as the other precision models
and the reference CPU implementation, making numerically stable
simulations possible.

3.3. Simulation stability

We have verified that simulations are indeed numerically
stable by performing a series of 50 independent MD simulations
of ubiquitin with the SPFP precision model and comparing the
trajectories with published results [9] for the other precision
models of our GPU implementation as well as the double precision
CPU implementation. We analyze root-mean-square deviations
(RMSDs) and root-mean-square fluctuations (RMSFs) of the Cα

backbone carbon atoms with respect to the crystal structure
(PDB code 1UBQ [24,25]). The highly flexible end tail of ubiquitin
(residues 71–76) was excluded from our analysis. GB trajectories
of 100ns length using a time step of 2.0 fs were generated with
settings as described above for the water droplets, however,
using the Berendsen weak coupling thermostat [26] with a target
temperature of 300K and a time constant of τT = 10.0 ps for the
heat bath coupling. The initial coordinates and velocities that form
the starting point of the 50 trajectories were generated using the
CPU implementation using a protocol as published [9]. Input files
for these simulations are provided in the Supporting Information.

Fig. 3 contains plots of the RMSD vs time. It shows that MD
simulations using theGPU implementationwith the SPFP precision
model have the same numerical stability as GPU based simulations

Fig. 2. Total energy (kcal/mol) along constant energy trajectories using a time step
of 0.5 fs without constraints. Shown are results for TRPCage (top), ubiquitin (center)
and apo-myoglobin (bottom) for different precision models.

using the SPDP and DPDP precisionmodels or the double precision
CPU implementation. The Cα backbone carbon atoms remain
within 3–4Å of the crystal structure for all 50 independent
simulations over the whole 100ns trajectory. We have shown
earlier [9], that this is not the case for an implementation that
employs single precision floating point arithmetics throughout
since in this case the numerical noise due to rounding errors
can lead to an accumulation of errors such that ubiquitin starts
to unfold. This is not the case for the SPFP precision model
which can be employed for numerically stable long-timescale MD
simulations.

Fig. 4 shows the RMSF values for each residue of the 50 native-
state simulations. An excellent agreement is found between all
precision models of the GPU implementation and the double
precision CPU implementation. The majority of the residues
remain within 2 to 3Å of the experimental structure with
somewhat larger fluctuations around residues 33, 48 and 63. No
major structural change is taking place during the simulations
which confirms that the protein remains within a native-state
ensemble. We thus recommend the GPU implementation of
PMEMD to be used with the SPFP precision model to reduce the
computational cost compared to the SPDP and DPDP precision
models while maintaining numerical stability that is equivalent to
the reference double precision CPU implementation.

4. Concluding remarks

We have implemented a new precision model (SPFP) for
efficient MD simulations on GPU hardware that supports rapid
atomic operations. This model uses a combination of Q24.40 and
Q34.30 fixed arithmetic for accumulation of forces and energies
respectively to deliver numerical precision that is equivalent to
our previously developed hybrid single/double precision (SPDP)
model but with performance on the latest generation of NVIDIA
GPUs (Kepler I, GK104) that is 60–80% faster than our original
SPDP model. There are no discernible differences in results from
our previously validated SPDPmodel and performance on previous
generation hardware (Fermi series) is the same if not slightly better
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Fig. 3. Root-mean-square deviations (RMSDs) of the Cα backbone carbon atoms
of ubiquitin (excluding the flexible tail, residues 71–76) with respect to the crystal
structure for 50 independent trajectories as obtainedwith the CPU implementation
and the GPU implementation of PMEMD using different precision models.

Fig. 4. Root-mean-square fluctuations (RMSFs) of the Cα backbone carbon atoms
of ubiquitin residues 71–76with respect to the crystal structure for 50 independent
trajectories of 100ns length as obtained with the CPU implementation and the GPU
implementation of PMEMD using different precision models.

than the SPDP approach. At the same time, however, the memory
footprint has been reduced, significantly in the case of implicit
solvent GB simulations. It is our intention to release a patch, that
will change the default precision mode from SPDP to SPFP for the
currently available version 12 of the AMBER software shortly.
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