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1. Introduction

"The underlying laws necessary for the mathematical theory of large parts
of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations

much too complicated to be soluble.”
(Paul Dirac - 1929)°

Since the advent of computers in the second half of this century mankind has become more or
less dependent on them for numerous tasks. Since the 1940's computers have vastly increased
in power, in recent times effectively doubling in computational speed every 18 months,” to the
point where todays fastest computers can execute more than a trillion (1 x 10'?) floating point
operations per second!® At the same time as computational speed has increased so has the
storage capacity of modern computers such that it is now common for modern
supercomputers to have gigabytes of primary (RAM) storage and terabytes of secondary

(disc) storage.

These rapid advances in computing power have brought with them a whole new field of
theoretical science termed computational science. This field employs the use of computers
for modelling and simulating a range of different properties from the structural forces in a jet
aircraft or the gravitational interactions between two galaxies to the electron distribution

within single molecules.

One such field brought about by these advances in computational power is that of
computational quantum chemistry whereby molecules and reactions are modelled by solving
approximations of the Schrédinger equation using computers. Such procedures can yield a
large amount of valuable data about the way in which molecules behave and interact so that

computer based calculations are now routinely used to supplement experimental techniques.
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However, the big problem facing researchers in this field is the complexity of the calculations

involved. Quantum mechanics states that the energy, and related properties, of a given

molecule can be obtained by solving the time-independent Schrédinger equation (eq. 1.1).°

HY = EY
Where: H is the Hamiltonian operator.
¥ is the wavefunction describing the system.
E is the systems energy.

However, exact solutions to equation 1.1 are not possible for systems larger than
H," so in order to find solutions for larger chemical systems theoretical chemists
have been forced to devise a range of different approximations to this equation
that are theoretically solvable. The development of these various approximations
have had such an impact on the field of computational chemistry that the 1998
Noble prize for chemistry was awarded, jointly, to Walter Kohn (fig. /.1) for his
development of density functional theory and John Pople (fig. 1.2) for his
development of computational methods in quantum chemistry, in particular his
work on the program Gaussian which is now the de facto standard for ab initio

quantum chemistry calculations.®

As discussed in section 5 the main problem with quantum chemistry calculations

using approximations to the Schrodinger equation is trying to achieve an

1.1

Figure 1.1
Walter Kohn
joint winner of
1998 Nobel prize
for chemistry.

Figure 1.2
John Pople
joint winner of
1998 Nobel prize
for chemistry.

approximation which gives acceptably accurate results but which scales linearly with problem

size. This is the so called "Holy Grail" of quantum chemistry’ and it is one such promising

linear scaling approximation method, the use of fast multipole methods,® which will be

discussed in this report.



2. Quantum Chemistry - Historical Background9

When quantum mechanics was formulated some 70 years ago it laid the theoretical
foundation for modern physics and chemistry.'® This made possible, in principle, the
understanding of how electrons and nuclei interact to form chemical bonds. However, as

stated by Paul Dirac in 1929"":

"The underlying laws necessary for the mathematical theory of large parts
of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble.”

Although very true in 1929 with the advances in computers made in the early 60-ies scientists
began to challenge this pessimistic view employing computers to look upon the complex

equations from new angles.

Initial attempts were made using the so called independent particle model or Hartree-Fock
(HF) method that was originally developed in the 1930's by Hartree, Fock, Slater and others
and successfully applied to atoms. In this model the famous many-body problem is overcome
and reduced to a set of single particle (orbital) problems by making the assumption that each
electron moves independently of the others present and experiences a mean field from the

fixed nuclei and other electrons.

An important contribution to this theory was made by C. C. J. Roothaan who published a
paper in 1951'% where it was suggested that the orbitals could be expanded into a set of basis
functions, also termed atomic orbitals, which could be expressed as Slater Type Orbitals” of

the functional form, in spherical harmonics, given in equation 2.1.

%g,n,l,m (r’e’lg) = N}/I,m (Q’S)anle—gr 2.1

Where: N is a normalisation constant.
Y, is the spherical harmonic function.

This procedure allowed the differential equations to be expressed as a matrix problem which
is well suited to solving via computer. A further important contribution to this theory was

made by S. F. Boys who suggested that the basis functions, instead of being described by an ¢’



function as in Slater Type Orbitals could instead be in the form of Gaussian type'* functions

with an e” dependence as in equation 2.2.

%g,n,],m (r’e’ 9) = N}/I,m (97 9)}’(2"*271)@792
X i (x,y, Z) — lexyly g N

Expressing the orbitals in this form leads to very large simplifications in calculating the

necessary integrals.

The HF method for modelling of molecules was then developed in the 60-ies and works as an
approximation to the Schrodinger equation in which the wave function ¥ is written as the
product of one-electron functions (orbitals). HF theory acts as the starting point for a
hierarchy of methods that aim to obtain as accurate solutions as possible to the Schrodinger

equation.

Originally many believed that non-empirical methods, such as HF theory, would never
compete with the semi-empirical methods since the computer resources required would be far
too large. John Pople was one such person who held this view but it was he who, over the

next decade, changed this situation.

The Hartree-Fock method effectively consists of two major computational steps. In the first
step the molecular orbitals are expanded, as suggested by Boys'?, into a basis set composed of
Gaussian functions. This allows the one-electron Schrodinger equation to be replaced by a
matrix eigen-value problem which yields the orbital energies and expansion coefficients. The
elements of this matrix consist of integrals over the basis functions that describe the various
energy components, such as the nuclear attraction energy, the kinetic energy and the electron-
electron repulsion energy. The second step consists of diagonalising the HF matrix which is

an iterative procedure that has to be repeated until self consistency is achieved.

The most demanding in terms of computer resources is the calculation of the integrals,
especially the electron repulsion integrals. The problem with these integrals is that there are a
very large number of them (10° - 10°) and they are six dimensional. Pople devised an
approach which reduced the computational costs by up to two orders of magnitude. This was

a decisive achievement and made possible the use of HF calculations for real chemical



applications. Following this came a number of improvements and differing theories, one
being the so called Density Functional Theory (DFT) devised by Walter Kohn where it was
proven that the exact ground state electron density uniquely specifies the acting one-electron
potential ¥(r). Since the kinetic energy of the electrons and their coulomb interaction cannot
be modified, it was concluded that the ground state density specifies the Hamiltonian of the
system and hence the properties of the ground state.'®!” Further work expanded on this
theory arriving, in 1992, with a computational implementation that could treat systems with

hundreds of atoms.

From this point forward computational chemistry developed considerably from a stage 30
years ago where many ridiculed the subject as a futile undertaking with little effect on
chemistry to a point today where the general consensus of opinion is that computational
chemistry is one of the most important developments in chemistry over the last two decades.
However, one problem still remains. Although the methods briefly discussed above greatly
simplify the computational complexity of the problem they still scale as the cube, or greater,
of system size. Since computers only double in power typically every 18 months, as
discussed in section 5, there is theoretically a maximum system size that can be solved.
Hence in order to progress further and make computational chemistry a truly versatile tool
that can accurately model anything from simple systems to proteins or DNA it is necessary to
develop methods that scale linearly with system size. Many people are currently working in
this field developing several methods with results that, to date, are encouraging. It is these

methods that will be discussed in detail later in this report.



3. Background Theory”

In the previous two sections a brief overview of the developments that have taken place in the
field of quantum chemistry has been given. Before going on to discuss the fast multipole
method for achieving linear scaling in electronic structure calculations it is necessary to

describe some of the background theory behind quantum chemistry.

3.1 Wavefunctions
The Schrodinger equation is a well known entity in modern science. In its barest, time

independent, form it states.

HY = EY 3.1

In this equation H is the short hand notation for the Hamiltonian operator which operates
on the mathematical function ¥, which represents the wave function of the system, to
yield the energy £E. Writing the Schrédinger equation in this way disguises the fact that

this equation is in fact a set of differential equations each with a function ¥,

corresponding to each allowed energy £,. Thus only for the case of a hydrogen atom, with
a single electron outside a single positively charged nucleus, is it possible to solve the

equation exactly.

Once the wave function is known for a particular state of a system it is then possible, in

theory, to determine any physical observable using equation 3.2.

_[ ¥’ <operat0r>‘1’dr

Observable = -
[¥ wde

3.2

The operator used is that which is appropriate to the observable required. i.e The

Hamiltonian A for energy, another for dipole moment, charge density etc.

® Presented here is a very brief overview of the theory involved in calculating electronic structure. For a more in
depth discussion of quantum mechanics the reader is referred to P. W. Atkins & R. S. Friedman, "Molecular
Quantum Mechanics". Chapter 9 of this book also gives a well written discussion of the methods behind
calculating electronic structure.



3.2 Atomic Orbitals and Spin
Wavefunctions which satisfy the Schrodinger equation are often called orbitals. An

atomic orbital is therefore just a mathematical function which is a solution to the time

independent Schrodinger equation.

When dealing with polyelectronic atoms the Schrodinger equation cannot be solved
analytically hence the so called orbital approximation is used. This approximation works
by treating each electron independently, each having its own one-electron wave function or
orbital. This is more commonly encountered in the standard procedure for describing
orbital configurations of elements i.e.

0 : 1s%25°2p*
Using this approximation the total wave function of an atom, ¥, is merely the product of

the one-electron wavefunctions ( y, ) for each electron, i.e. (eq. 3.3).

V=11 2:2:04- X 3.3

When writing the orbital configuration of an atom as in the example of oxygen above this
is understood to be shorthand for the true representation.
151572525 2p,“2p P2p, “2p,*

where a and P represent the two possible orientations of electron spin (up & down).

Including the electron spin in equation 3.3, denoting spin a as y and spin [ as E , yields,

for the simpler case of helium, the wave function for the whole atom as a product of spin-

orbitals (eq. 3.4).

Wi = 215 (l)xls (2) 3.4

where the numbers in parentheses refer to the electron associated with each spin-orbital.

It can be seen, however, from equation 3.4 that this does not satisfy the Pauli exclusion

principle. This states that':



"the wave function for the system (Y ) must change sign if any pair of
electrons are interchanged, since electrons are identical fermion

particles."

Thus writing the total wave function as a simple product of one electron orbitals is not

sufficient, as in equation 3.4, since:

lI]He = %u (I)EIV (2) & lP'He = %u (2)Elc (1) 35

Y' is therefore not the negative of V.

In order to satisfy the Pauli exclusion principle it is necessary to express the wavefunction

for the helium atom, using the orbital approximation, as in equation 3.6.

¥, = %[xu (2 (2)- 20 )z, )] 3.6

(The 1/72 acts as a normalisation constant such that ¥ Wdr =1. Integration is carried out

over the element dt since there are effectively 4 dimensions, dx, dy, dz and spin.)

However, on going to a more complex system such as beryllium it is necessary to allow for

all possible interchanges between the four electrons present giving equation 3.7.

Pa = 2001 22 B (4) = o0 W, ), B (4)+

22 D20 2201, 322 ()= 22, V0, (@)1, B)2, (4) et 3.7
in total 24 products.

It can quickly be seen that the number of products required will rise rapidly as the atomic
number increases. Fortunately all these products are simply the expanded form of
determinants. Thus equation 3.6 is simply the expanded form of the determinant given in

equation 3.8 below.

1

\P -
He \/5

2.0z, (23‘ 3.8

2.0 7.,

10



and for beryllium the long equation given in 3.7 can simply be expressed as:

zls (1) zls (2) zls (3) %n (4)
e _ LW 2,02 2,06 2.4 Ny
* \/_?Czc(lg %2c(2; lzc(?’; q(4) '

% 2s (1

Since only the diagonals of the determinants are required to define them the expanded

spin-orbital wavefunctions are usually written just as the simple products in equation 3.10.

lI]He = %u xls or %1.(2

. 3.10
lI]Be = %u %2s
Thus the wave function of an atom (¥ ) can be written generally as in equation 3.11
remembering that this is not just a simple product.
W=y XX Xaee X 3.11

The problem, therefore, is reduced to finding y,, x, etc. These are each one-electron

functions in polar co-ordinates multiplied by the electron spin (a or ). Each individual

orbital ( x, ) can be expressed as a numerical function that assigns a numerical value to

each point defined by the 3 co-ordinates.

Hartree produced some very accurate atomic functions of this type that were later
analytically expressed by Slater,” of the form given in equation 2.1, and were termed
Slater atomic wavefunctions. The variation of the spherical harmonic part is identical to
the variation for the hydrogen atom wavefunctions so the differences from atom to atom

are found only in the r-dependent part of the orbital.

3.3 Molecular Orbitals

The previous two sections have concentrated on the wavefunctions for atoms rather than
molecules. In principle the wave function for a molecule is no different than that for an
atom hence the orbital approximation given in equation 3.12 can be made where ¥

represents the molecular wave function and each function ¢, represents a three

11



dimensional function determining the properties of each individual electron in the

molecule.

Y =9¢0,0,0,....9, 3.12

As discussed previously it is necessary to remember that this is not a simple product but
rather the diagonal of a determinant since the wave function has to be antisymmetric with

respect to electron interchange.

In quantum chemical calculations the goal is generally to derive the wave function, ¥, for

a given molecule. This can be done if the constituent molecular orbitals, ¢, , are known.
The method normally employed for finding each ¢, is to expand each of the unknown
molecular orbitals, ¢, , as a linear combination of known atomic orbitals as shown in

equation 3.13.
¢n :zcnk%k 313
k

where each y, will be a function of the form
X = constant x (function of r)x (spherical harmonic finction in 0 and ¢)

Thus the problem of calculating the wave function for a molecule reduces to finding the
expansion coefficients cx. A simple example is that of the symmetric molecule Li, which

has the molecular orbitals as shown in figure 3.1.

—20,

2s4- +42s

—H—2,
—H—wu
1s+4 —+1s

-%*—-10@

Li Li

Figure 3.1: The molecular orbitals for diatomic Li,. Adapted from G.H. Grant & W. G.
Richards "Computational Chemistry" 1995, p.10.
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The ground state molecular wave function for Li, will therefore be:
lI]Liz = (blo-g (blo‘g (blo‘u (blo‘u ¢20'g ¢20'g 314
with (bk,g being defined by equation 3.15.

(blo‘g =CnXise T CnXsei

3.15
(blo‘u =CnXisti T Xisi
Since Li, is symmetric to inversion for 16, and antisymmetric for 16, then
Cip =Cpp
3.16
€y =—Cxp

The variation principle states that the more flexible the wave function describing a system
the lower the energy of that system will be. When all particles are an infinite distance
apart the energy of the system is defined as zero hence all calculated energies are negative
numbers with the lower the energy the larger the number. For Li, a lower energy can be
obtained by using a more flexible wave function by extending the molecular orbital

expansion.

¢n = cnl%lsLi + cn2%2sLi + cn3 %2pLi 317

The problem, however, remains the same. In order to find the molecular wave function,
Y, it is necessary to find each molecular orbital ¢, in terms of known functions (atomic
orbitals) multiplied by coefficients that have to be determined. This is effectively what ab

initio® computational methods attempt to find by varying the coefficients until an energy

minimum is found.

¢ The term ab initio comes from Latin meaning 'from the beginning.'

13



4. The Hartree-Fock Self-Consistent Field Method

The HF-SCF method is a way of finding the approximate wave function of an atom or
molecule as described in section 3 above. The HF method makes use of the Born-
Oppenheimer approximation, where electron and nucleon movement are independent, and
attempts to solve the Schrédinger equation (eq. 3.1) using, for the Hamiltonian, equation

412

__h2 L& Z,e 1 o2
= ZMEZVi 224”307’1:'4_2;47780’”& "

4.1 The General HF Approach
The repulsion felt between two electrons is significant and must be included in any

accurate electronic structure method. However, evaluating the two electron integrals is
inherently very difficult so various approximations are used. With one such
approximation, the Hartree-Fock method (HF), electron-electron repulsions are treated in
an average way with each electron considered to be moving in the field generated by the
nuclei and an average field from the other n-/ electrons. The spin orbitals that give rise to

the lowest energy wavefunction are then found using variation theory.

This procedure leads to the Hartree-Fock equations® for the individual spin orbitals. For

spin orbital ¢, (1) where electron 1 has been assigned to spin orbital ¢, the equation is:

£, (1)=2.9, (1) 4.2

where ¢, represents the spin orbital energy and F;, if each spin orbital is expanded in the

form of a set of basis functions as discussed in section 2, is the Fock matrix (eq. 4.3).

F=h+J--K 4.3

¢ The precise nature of variation theory will not be covered here. For a good description the reader is referred to
section 6.9 of "Molecular Quantum Mechanics" Edn. 3 by P.W. Atkins and R.S. Friedman.

14



where h is the core Hamiltonian, J,, the coulomb matrix (eq. 4.4) and K, the exchange

matrix (eq. 4.5).

S = ;Dcd (6.0]2.9.) 4.4
=§Dcd( B 9,9.) 4.5
Where D is the density matrix (eg. 4.6).
. =2).C,C., 4.6
r

Each spinorbital for the molecule under study can be found by solving an equation of the
form given in eq. 4.2 above using the corresponding Fock matrix F;. However, F; depends
on the spinorbitals of all the other electrons present so the solution can only be found using
an iterative procedure that stops when the solutions are self consistent, hence the name
self-consistent field (SCF). This procedure, illustrated graphically in figure 4.1, involves
taking a trial set of spinorbitals which are used to construct the Fock matrix. The HF
equations are then solved to obtain a new set of spinorbitals which are then fed back into

the Fock matrix and so on. The cycle is repeated until the pre-defined convergence criteria
are fulfilled.

Choose set of
basis functions

coefficients c;, (and
therefore wavefunctlons v,)

, :Je‘(l).fe, (V)
Fock matrix,
F -

Formulate set of trial 1
a

| Overlap
matrix, S
det|F —£,85|=0

Energies, ¢,
coefficients, ¢,

Yes

Convergence

Figure 4.1: Schematic of the iterative procedure in the Hartree-Fock self-consistent field
method. Adapted from Atkins, "Molecular Quantum Mechanics" Edn. 3, p. 283.
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The number of spinorbitals that can exist are technically infinite but in practice it is
necessary to be content with solving for a finite number m, where m must be greater than
the total number of electrons present. The m optimised spinorbitals, obtained when the
HF-SCF procedure is complete, are generally arranged in order of increasing energy with
the n lowest energy orbitals being termed occupied orbitals and the remaining spinorbitals
being termed virtual orbitals. From these spinorbitals can be found the ground state
wavefunction for the molecule and the molecular orbitals. An example of the molecular

orbitals obtained from the HF procedure are given in figure 4.2.

HOMO LUMO

Figure 4.2: Example of highest occupied and lowest unoccupied molecular orbitals of benzene
generated using the Hartree-Fock SCF procedure with the STO-3G basis set. Source:-
rd
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5. Scaling in HF-SCF Calculations

Solution of the HF equations by the linear combination of atomic orbitals (LCAQO)

method,?***

as discussed in section 4 above, leads to a set of equations, the complexity of
which scales formally as N*. Where N is the number of basis functions describing the
molecule. The origin of this scaling is due to the computation of the two electron repulsion

integrals (ERI’s),” (eq. 5.1).

(9.9,

8.0,)= [[ drdr' s (1), () —— ("), () 5.1

|r—r'

which are required to construct the Fock matrix (eq. 4.3).

Hence the current major bottleneck in Hartree-Fock Self Consistent Field electronic structure
calculations is the iterative construction of the Fock matrix. In the 1970's it was found that,
while the number of ERI's grows formerly as N*, in large systems a sizeable number are small
s0 avoiding their calculation leads to algorithms that scale as N°Log N or even N2/ (fig.

5.1).

250

N
o
o

-
o
o

S
—5- N’Log N
—A— N?

=
o
o

Calculation Complexity (Arbitrary Units)

o
o

System Size (Arbitrary Units)

Figure 5.1: Arbitrary plot showing the scaling relationship between various power curves.
However, the size of an ERI is not always a good measure of its importance to the Fock
matrix. Hence a method was developed that uses density weighted thresholding of the ERI's
to determine which are relevant to the construction of the Fock matrix.”® The use of these
methods and other evaluation schemes has allowed direct SCF (a method whereby the pre-

factors are calculated on the fly and then discarded rather than swapping to disk and then

17



retrieving when next needed) calculations on large molecular systems to obtain an N*

dependency in construction of the Fock matrix.

Although other steps in the calculation procedure, scale greater than N2, such as
diagonalisation of the relevant matrices which scales as N°, it is the construction of the Fock
matrix which is the most computationally intense. Recent work has produced a direct method
that gives a linear (N) routine for the minimisation of the density matrix D (eq. 4.6).”> Hence
large scale HF-SCF calculations are therefore limited by the calculation of the ERI's which at

best can be made to scale as N>,

5.1 The Problems of Non Linear Scaling
The problem with performing calculations that scale as a power dependence is that, in

theory, there is a maximum system size that you can solve regardless of computer power.
With N scaling doubling the power of the computer used will only increase the
complexity of problem that can be solved in a given time by a factor of V2. Thus by
arbitrarily plotting the complexity of problem that can be solved in a given time against
computer power (or time if computers are indeed doubling in power every 18 months) the

problem becomes obvious (fig. 5.2).

3L
2.5¢
Problem size 2+
solvable in a
given time

(Arbitrary Units) 1.5¢

1k

0.5¢

2 4 6 8 10
Computer Power [or Time]
(Arbitrary Units)
Figure 5.2: Arbitrary plot showing the problem of non linear scaling.
Hence the law of diminishing returns means that the curve becomes asymptotic at a given
complexity thus unless calculation procedures, that give accurate results, can be devised

that scale linearly with problem size there will come a point where, regardless of computer

18



power, it will not be possible to find the electronic structure, in a given amount of time, for

systems greater than a given size.
There is therefore a large amount of research being directed at methods for computing the

coulomb and exchange matrices that scale linearly. One promising area of research is in

the use of multipole expansions which are discussed in section 6.
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6. The Fast Multipole Method

Over the past 15 years there has been widespread activity on a new class of fast numerical
methods for applying linear operators. Collectively these have come to be known as "Fast
Multipole Methods (FMM's)"*>° The name fast originates from the idea of Fast Fourier

Transform.

The essential property of the fast multipole method is that the sparse decompositions used to
render applications of the operators are fundamentally approximate. Another way to state this
is that the method effectively makes use of analytic, rather than algebraic, properties of the
operators. The fact that the fast multipole method is fundamentally approximate is not,
however, a limitation because, if correctly implemented, the errors can be made as small as

necessary at a reasonable cost.”'

6.1 History of FMM Methods
The mathematics underlying the new fast multipole methods is of 19" century origin hence

one is bound to ask why the availability of such methods for sparse decompositions of
linear operators has not been recognised until the close of the 20" century. The answer is
due to the nature of the scaling of these methods. A method which grows slowly with
problem size also, by virtue of the way it works, diminishes less rapidly as the problem
size is decreased. Thus there is a minimum problem size, or break even point, at which
using a linear scaling (fast) method becomes more economical than traditional slower

methods. This is illustrated graphically in figure 6.1.

140

120

o
1S3

80

——N? Scaling

60 —&—Linear Scaling

40

Calculation Complexity (Arbitrary Units)

20

0 5 10 15 20 25 30 35 40
System Size (Arbitrary Units)

Figure 6.1: Arbitrary plot showing the concept of a break even system size.

20



In general it is only recently that computers have become powerful enough to study
problems of break even size.*® Thus prior to the 1990's fast multipole methods were purely
academic curiosities that were uneconomical for solving problems of the time. It is only
recently with the rise in computational power that such methods have become

economically viable.

The first fast multipole method was originally devised to solve N-body problems using
particle in cell methods.>*** Since then a number of variants on this approach have been
made. One of the most useful in terms of solving electron repulsion integrals was
published in 1990 in a paper entitled "Multilevel matrix multiplication and fast solution of
integral equations" by A.Brandt & A.A.Lubrecht.”® This and other work in the field
encouraged computational chemists to begin to look at the ways in which FMM could be
adapted to achieve linear scaling HF-SCF electronic structure calculations for large

systems.

6.2 General FMM Theory®
The fast multipole method was originally devised for calculating interactions between a

system of classical particles interacting via two-body forces.*® This is an N-body problem
which requires, for a direct summation over all pairs, N* work.”” The fast multipole
method works by splitting the problem into near and far fields. The near field is calculated
exactly (by direct SCF methods) while the far field is divided into a number of boxes
where the interaction between all the charges in one box and all the charges in another is

represented by the interaction between two multipoles centred in each box.

As the distance between boxes increases it is possible, for a given level of accuracy, to use
larger and larger boxes (fig. 6.2). Thus for larger systems where the far field is substantial
in comparison to the near field the work required is reduced from N? scaling to something

which approaches linear scaling with respect to problem size.

¢ The mathematics underlying the fast multipole method will not be discussed in detail in this report. For
information on the precise details of the mathematics involved the reader is referred to references 36 and 39.
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% = Near Field
% % % = Far Field Boxes

Figure 6.2: Illustration of the hierarchical box structure of the fast multipole method. Adapted from
F. Jensen, “Introduction to Computational Chemistry”, 1999 p. 387.

The size of the errors introduced into the calculations can be adjusted by varying the size
of the boxes and the length at which the multipole expansion representing the interaction

between multipoles is truncated.

This method, while easily applied to systems of point charges, is not immediately
applicable to quantum chemical calculations because electrons are represented by
probability distributions in quantum mechanics rather than discrete particles as in classical
mechanics. Hence a large amount of work was required to adapt the original fast multipole

method of Greengard and Rokhlin®® for use in HF-SCF calculations.

6.3 The Coulomb and Exchange Problems
Research in this field has effectively followed two paths. Early work addressed the so

called “electronic quantum coulomb problem” which is related to the formation of the

coulomb matrix (eq. 6.1).

S = ZDcd (¢a¢b ¢c¢d> 6.1

This component of the Fock matrix deals with the electrostatic repulsions between

.1 .
electrons and, due to its — dependence on the distance between two electrons, has an effect
r

that extends a substantial distance before becoming negligible (fig. 6.3).
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Figure 6.3: Arbitrary plot showing the 1/r scaling relationship of the coulomb interaction.

This problem therefore has to be addressed in a different way to the second component of

the Fock matrix, the exchange matrix (eq. 6.2).

6:9.) 6.2

K= chd (¢a¢c

The exchange matrix is essentially responsible for the formation of chemical bonds in
molecules as it represents the exchange of electrons between bonded atoms. The nature of
this matrix is very different to the coulomb matrix because the effect, in non metallic
systems, is very localised. Hence this has to be treated in a different way to the coulomb
problem. More recent work has therefore been directed towards developing methods for
fast assembly of the exchange matrix which, when coupled with fast builds of the coulomb

matrix, will yield a linear scaling solution to the construction of the Fock matrix.

Since the two problems are very different and hence have been treated as essentially

separate entities they will be covered separately in the following two sections.
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7. The Electronic Quantum Coulomb Problem

7.1 The N’ Limit
The N? limit for direct SCF calculations can be explained in terms of the Gaussian product

theorem which states that an uncontracted distribution p_, =@,¢@, can be expressed as a
finite sum of cartesian Gaussian type functions with exponent £, =C, +¢, 2 E.g. the

product of two s-type Gaussians is:-

exp[—ga (r—A)z}xexp[—gb (r—B)z} = exp[—§ (A—B)z}xexp[—gp (r—P)z} 7.1

As the size of the system increases the radial overlap (exp[—§ (A -B )2} ) falls off

exponentially with the distance between A and B and the number of significant
distributions to the density approaches N from above. Similarly the number of coulomb
matrix elements larger than a certain threshold also increases as N. Hence computation of

the coulomb matrix by conventional methods is at best N* and typically around N*7 2.

7.2 The Multipole Expansion in Cartesian Co-ordinates
As system size increases the dominant component in the two electron energy term becomes

due to simple electrostatics. This electrostatic energy is given, when the overlap of the two

densities is minimal, by equation 7.2

E;;sz.drj.dr'p/!(rﬂr—r'rl pB(r') 7.2
This can be approximated accurately by expressing |r - r'|71 in the form of a multipole

expansion. In cartesian co-ordinates this is in the form of a Taylor series expansion giving

equation 7.3.
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Q represents an unmodified cartesian multipole moment. Truncation of this expansion
allows the electrostatic energy to be evaluated to a desired degree of accuracy determined

by the length of the expansion used.

7.3 A Practical Implementation of Multipole Methods for Solving the Electronic
Quantum Coulomb Problem

An example of early work using this approach is discussed in a paper entitled "Achieving
linear scaling for the electronic quantum coulomb problem" by M. Strain ef al.*' In this

paper they report that:

"a generalisation of the fast multipole method to Gaussian charge
distributions achieves near linear scaling for the quantum coulomb

problem."

They also report that:

"the method becomes faster that standard analytic evaluation of
Gaussian two electron integrals for systems containing as few as 300

basis functions."

The method employed by Strain et al. works by embedding the system under consideration
in a hierarchy of 8" cubic boxes, as discussed in section 6.2, where n represents the number
of tiers used (in this case N < 7). All charge distributions in a given box were then
represented by multipole expansions about the centre of the box. The near-field section,
defined as interactions within a given box and between neighbouring boxes, was treated

exactly while the far-field was treated through multipole expansions.

Since the charge distribution in quantum chemical problems is a continuum it is necessary

to define the range of a charge distribution. Truncating the distribution too early leads to
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large errors in the results while truncating it at a much longer distance leads to the need for

a large amount of extra computation for negligible improvement in accuracy.

This problem was addressed by Strain et al. using equation 7.4 which represents the range

definition derived from the basic coulomb integral between two s-type functions.*

N | —

r=(2s)

Erfe (€) 7.4

Here s represents the exponent of the product Gaussian distribution and Erfc represents the
error function &€ which is the desired level of accuracy. A given interaction is then only
included in the far field if the number of boxes between interactions is greater than the sum

of the ranges of the distributions.

The second problem is deciding at which point to truncate the multipole expansion since,
being derived from a Taylor series, it effectively has infinite terms. As with the charge
distribution above, truncating too early gives large errors while truncating at a higher
number of terms necessitates unnecessary work. This problem was addressed by Strain et

al. using equation 7.5.

Ly
e=k (ﬁj 7.5
R

where L. is the length at which the expansion is truncated, R is the number of boxes, a is a

constant, k is an adjustment factor and ¢, as above, is the desired accuracy.

It was found that using values of l.¢r= 12 and € = 10 gave errors of = 10 Hartrees for the
coulomb energy which is small enough to have negligible effect on the chemistry under

study.

The computational times required for calculating the entire (NF+FF) coulomb matrix with
standard analytic two electron integral evaluation between contracted Gaussian functions
and calculation using fast multipole methods (the specific method developed was termed

GVvFMM in the paper) were compared for a range of graphitic sheets of the form C_,Hg,
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for m=1to 8. These sheets were modelled using the 3-21G basis set with ¢ = 10'6, legr =

12 and the number of boxes set at 8° for the FMM calculations.

It was found that the fast multipole calculations became competitive with analytic
integration when 80 % of the interactions were treated in the far field, in this case for as
few as 300 basis functions (C,4H2). The results obtained are shown in figure 7.1 where

each of the curves have been fitted with an equation of the form N*.
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Figure 7.1: CPU Times (IBM/RS6000-370) for the formation of the coulomb matrix (first iteration of the SCF procedure) for
a series of graphitic sheets using 3-21G basis set with analytic and GVFMM calculations. Adapted from M.C.
Strain et al. Science, 271,1996, 51.

The effective scaling for analytic integration was found to be = 2.11 while for the GVFMM
it was found to be only = 1.35. This is substantially lower than the quadratic behaviour for
analytic integration. Thus for the largest calculation carried out (C;3g4Hsg = 3500 basis
functions) the GVFMM was over eight times faster than direct methods and with an

absolute error of only ~ 10® Hartrees.

A breakdown of the NF and FF components of the coulomb problem calculated with
GVFMM for 8 boxes showed that the computational time was dominated by the analytic
integration of the NF portion (fig. 7.2) even though for C;g4Hyg it represented only 3 % of

the total interactions.
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Figure 7.2: CPU Times (IBM/RS6000-370) for computing the NF and FF components of the coulomb matrix for a series of
graphitic sheets using 3-21G basis set with analytic and GVFMM calculations. Adapted from M.C. Strain et al.
Science, 271,1996, 51.

Hence in the large molecule limit where the ratio of NF interactions to FF interactions
becomes ever smaller the computational time required for FMM calculations of the

coulomb matrix should approach linear scaling.

The authors conclude that while the results obtained were limited to graphene-sheets the
procedures used are equally valid for complex materials and that given the speed, accuracy
and scaling properties of the GVFMM in practical, high accuracy, calculations the method

is very promising for future electronic structure calculations on large molecular systems.

Further work on the problem has refined the technique by adjusting the size of the
hierarchy of boxes used and the point at which the expansion is truncated to obtain more
accurate results. Strain ef al. have also gone on to expand the GVFMM method for the

calculation of Kohn-Sham analytic energy second derivatives in density functional theory."

The major problem, however, with the GVFMM method is that it is unlikely to scale as
favourably with 3 dimensional systems since the separations between atoms grow much
more slowly in 3-d.** Hence while a fast method for 2-d structures, such as graphitic
sheets, the work of Strain et al will not necessarily give linear scaling when applied to

complex molecules such as proteins.

" This topic will not be covered in this report. For further details the reader is referred to references 44 & 45.
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Work by M. Challacombe and E. Schwegler, who were the first to demonstrate true linear
scaling for 3 dimensional systems, found that if Hermite Gaussian type functions (eq. 7.6)
are used instead of cartesian Gaussian type functions the complexity of the FMM

calculations can be greatly reduced.*®

ot oM oY
APy (r):_ﬁPL P ap? exp[—gp (r—P)z} 7.6
x y z

Use of this idea and appropriate thresholding with a quantum chemical tree code that uses
a multipole and penetration acceptability criterion to determine near and far field on the fly
gives linear scaling for construction of the coulomb matrix. The tree code (fig 7.3) works
by starting with the root (parent) cell which contains all of the particles. Space is then sub
divided in a recursive manner into smaller cells (children). Computation is then simplified

by representing the particle distributions within each cell as a multipole expansion.

Tier O (Root)

Tier 1

Tier 2

Tier 3

Figure 7.3: Illustrative example of the tree-code data structure showing how space is sub divided into a hierarchy of cells.
Kindly provided by M.Challacombe, personal correspondence.

In Challacombe ef al.’s implementation of this method* the tree code represents the
electron density using a hierarchical multipole representation. The tree is then traversed
for each of the matrix elements and a multipole acceptability criterion and penetration
acceptability criterion to ascertain if the error that arises from the multipole approximation
is acceptable. If the error falls below a certain threshold and is thus acceptable the
interaction of the “bra” charge distribution is calculated using the multipole representation
at that level of resolution. If the error is greater than a certain threshold it is considered

unacceptable and sub-branches of the tree continue to be traversed, going to greater and
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greater resolution until the errors are acceptable. Any near field interactions are then

finally evaluated accurately using a modified McMurchie-Davidson integral code.*®

Challacombe and Schwegler tested the scaling properties of their method by performing
SCF calculations at the RHF/3-21G level of theory on a range of water clusters (fig. 7.4).
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Figure 7.4: Example configuration of water clusters used for testing FMM calculations. Adapted from M. Challacombe et al.
J. Chem. Phys. 110, 1999, 2332.

The results obtained for construction of the coulomb matrix (J matrix) are given in figure

7.5 showing the comparison between direct J builds and fas¢ J builds.
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Figure 7.5: CPU Times (IBM SP2 66 MHz, 256 Mb RAM) for the formation of the coulomb matrix by direct and fast
methods on a sequence of water clusters. Adapted from M. Challacombe et al. J. Chem. Phys., 106, 1997, 5526.

Figure 7.5 shows that for more than = 80 water molecules the quantum chemical tree code-

FMM method of building the J matrix scales linearly with system size.
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The errors in the converged total energies of the clusters were kept as small as those for
direct methods indicating that this method for building the coulomb matrix, while giving
linear scaling, is suitably accurate for practical computational modelling. Thus linear
scaling of the electronic quantum coulomb problem has been achieved and the next step in
achieving linear scaling for building the Fock matrix is the construction of the exchange

matrix (K matrix) covered in section 8.
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8. Linear Scaling Exchange Matrix Builds

Since exchange interactions are, in non metallic systems, very short range in comparison to
coulomb interactions the methods used for fast evaluation of the coulomb matrix are not
directly applicable to building the exchange matrix with linear scaling. Hence recent work by
E. Schwegler, M. Challacombe and others has centred on methods for achieving linear scaling
for the exchange problem which when coupled with fast methods for J matrix builds and a
simplified density matrix minimisation*’ will allow building of the Fock matrix in a way that

scales linearly with problem size.

The first specialised methods to be developed for building the exchange matrix worked by
truncating the density and exchange matrix with distance dependence cut-offs.*

Unfortunately these methods at best scale as N,

The first linear scaling method, termed ONX (order N exchange), was developed by
Schwegler e al.>' and is based on the assumed exponential decay of the density matrix

contributing to the exchange matrix (fig 8.7).

10,

8l

Intensity 6F
(Arbitrary Units)

4t

2+

2 4 6 8 10

Distance
[Arbitrary Units)

Figure 8.1: Arbitrary plot showing the concept of exponential decay with distance.

This method calculates the insignificant elements of K, and so simplifies the calculations, by

thresholding using equation 8.1.

et

IN(ah=J.dr-|.dr'(bd(r)(bb(r')|r—r'|4ef 8.1
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The success of these methods, however, is dependent on a knowledge of the density matrix
decay to achieve a balance between accuracy and speed. Central is the assumption that the
exchange interactions become negligible when the separation of basis functions exceeds a

certain thresholding parameter.

An improved version of this method has since been developed™ that uses a rigorous method
for linear scaling computation of the exchange matrix and does not assume anything about the
decay of the density matrix. Thus if given an insulating system, such as a protein, which has
approximate exponential decay the computation time scales linearly, as in figure 8.2 below,
while if given a metallic density matrix, as in graphite, the calculation naturally reverts to

quadratic scaling (fig 8.3).

The main breakthrough in this later version of ONX was the realisation that the integral
screening scales as N2, while the evaluation of the integrals scales only as N. Thus methods
were developed that sort the integral estimates in such a way that the screening overhead is

also reduced to linear scaling.

8.1 Multipole Accelerated Exchange
Work by E. Schwegler and M. Challacombe has found that an adaptation of their ONX

method that uses multipole approximations can give an extremely competitive approach

for computation of the HF exchange matrix of large systems.

When computing the exchange matrix contracted Gaussian type functions of the form

given in equation 8.2 are used.

P, (r):zdai‘Pai (r) 8.2

However, this leads to four fold contraction loops (eq. 8.3) when evaluating the electron

repulsion integrals which are computationally very expensive.

K,

(6.0, 16,9, ) =ZZ

i

. K

K
zzdaidbjdckddl (lPai\ij | chklPdl) 8.3
k1
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It has been known for some time that it is possible to move a fraction of the electron

repulsion integral evaluation outside of the contraction summations. It is also possible to

reduce the average contraction length ( K ) of the basis function products, by pre-screening,

to:

(ba(I’)(Iﬁb(l’)ZZZ‘Pai(;ﬂ)‘Pb}(;ﬂ) 8.4

_4
This, however, still results in an amount of work that scales as K .

Schwegler et al. have found that by decoupling distributions (¢,¢, | and | ¢.¢,) that are

well separated and using a multipole approximation enables the contractions to be
performed independently of the ERI. Multipole approximations, used in conjunction with
a multipole acceptability criterion™ which controls errors due to truncation of the
expansions, can be used with the ONX method to eliminate much of the work associated
with basis set contraction and so offer an extremely competitive approach to computation

of the HF exchange matrix for both large systems and highly contracted basis sets.”*

The extent to which formation of the exchange matrix can be accelerated by using
multipole approximations is dependent on two factors. The first is the percentage of all
interactions that can be accurately calculated in a multipole representation. The second is
the relative speed of calculating and interaction with multipole versus direct ERI

evaluation.

8.2 A Practical Example of Multipole Accelerated Exchange
In a paper entitled “Linear scaling computation of the Fock matrix IV. Multipole

accelerated formation of the exchange matrix™>> Schwegler et al. report the results of
exchange matrix builds, for a series of water clusters and graphitic sheets, using multipole

accelerated versions of their order N exchange (ONX) and symmetrised ONX (SONX).®

£ ONX and SONX are linear scaling methods for computing the HF exchange matrix.
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The results obtained (figs. 8.2 & 8.3) show that the multipole accelerated exchange
methods scale linearly with system size and show between a 4 and 5 fold increase in speed
over non accelerated methods (ONX and SONX). The scaling of the ONX routine can be

seen to be linear for an insulating system (fig. 8.2) and quadratic for a conducting system
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Figure 8.3: CPU Times (PPC 604e 322 MHz) calculation of HF-exchange

matrix by direct and fast methods on a sequence of graphitic
sheets (RHF/STO-3G). Adapted from M. Challacombe et al.
Accepted, Pre-print LA-UR-99-578.

The authors also present results of error analysis (fig. 8.4) that shows that:

“the errors incurred by MAONX are indistinguishable from the

integral pre-screening errors associated with the Schwartz inequality

used in ONX.”
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Figure 8.4: Absolute errors in the converged total energy for a series of water clusters. Adapted from M. Challacombe ef al.

Accepted, Pre-print LA-UR-99-578.
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The authors conclude that:

“Implementation [of multipole expansions] in the linear scaling
methods MAONX and MASONX for computing the Hartree-Fock
exchange matrix indicate that large computational savings are possible

when tightly contracted basis sets are used.”

MAONX was found to be 4.6 times faster that ONX for exchange matrix builds of water
clusters and graphitic sheets with highly contracted basis sets. With less contracted basis

sets the speedup is observed to be = 2 times. Thus:

“...multipole acceleration is expected to greatly increase the
efficiency of linear scaling computations of the Fock matrix when

highly contracted basis sets are used.”
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9. Linear Scaling Fock Matrix Builds

As stated in section 4.1 the Fock matrix (eq. 9.1) is composed of h, the core Hamiltonian, J

the coulomb matrix and K the exchange matrix.

F=h+J-—-K 9.1

By using the principles discussed in sections 7 and 8 it has been possible to formulate a
method that gives linear scaling for Fock builds with acceptable levels of accuracy that
removes the current major bottleneck in HF-SCF calculations making possible electronic

structure calculations on systems of previously unprecedented size.

9.1 Example Calculations using Linear Scaling HF-SCF Theory.
The procedures discussed are very much still in their infancy so most published

calculations have only been done on sequences of water clusters, polyglycine chains or
graphitic sheets. While useful for calibration and error control these examples are not

really of great chemical interest.

The only people to have published calculations involving systems of chemical interest
using these methods are M. Challacombe and E. Schwegler who carried out calculations at
the RHF/3-21G level of theory on several proteins of interest including endothelin (EDP),

charybdotoxin (CRD) and the tetramerization monomer (P53).%

The results obtained are given in table 9.1 below.

Table 9.1:  Results of single point MONDO RHF/3-21G calculations on selected proteins. Adapted from M. Challacombe et
al. J. Chem. Phys., 106, 1997, 5526.

Protein Energy Atoms Basis Time to Time to
(Hartree) Functions compute K compute J
(hours) (hours)
EDP | -8154.72370 255 1461 0.85 0.11
-8154.72323!
CRD -16737.90643 572 3237 2.70 0.38
P53 -17115.30474 698 3836 2.10 0.38

! Energy obtained with GAUSSIAN 94 default settings.
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From the two energies given for EDP it can be seen that the linear scaling methods, while

allowing fast calculations, give very good accuracy in the results.

Figure 9.1 shows the iso-surfaces of the P53 tetramerisation monomer electrostatic

potential, obtained via linear scaling SCF theory.

Figure 9.1: Iso-sufaces of the P53 tetramerisation monomer electrostatic potential at the RHF/3-21G level of theory. Obtained
using linear scaling SCF theory. Adapted from M. Challacombe et al. J. Chem. Phys., 106, 1997, 5526.

The P53 calculation, involving a total of 698 atoms and 3836 basis functions, is the largest

published Hartree-Fock calculation to date.

Interest in the P53 protein comes from cancer research. P53 is a tumour suppresser,
mutations of which are the most frequently observed genetic alterations in human cancer.
Thus application of linear scaling HF theory to problems of this type could prove very

useful in future medical research.
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10.Conclusion

As discussed in section 5.1, current methods for finding the electronic structures of systems,
using ab initio methods, are hindered by their steep scaling. This places severe limitations on
the size of systems that can be modelled. For example a large amount of interest is currently
directed towards understanding the methods by which various proteins work in the human
body. Modelling of such proteins in the gas phase is currently at the very limit of what is
achievable using conventional methods. While the expected increases in computer power will
make modelling of reasonable size proteins possible in the near future such calculations will
be restricted to gas phase molecules as attempting to incorporate solvent effects will lead to
calculations too complex to solve in a reasonable amount of time. Unfortunately the way
proteins fold is very important in terms of their reactivity. Hence modelling in the gas phase

can yield only limited information.

The examples discussed in this report show that the use of multipole expansions for Hartree-
Fock calculations can reduce the scaling for Fock matrix builds to linear, whilst maintaining

acceptable accuracy.

Hence, although only in their infancy and yet to be properly implemented in the main
commercial quantum chemistry packages, these methods would appear to have a bright future

unlocking the way towards modelling of ever more complex systems.

The major bottleneck in HF-SCF calculations would therefore appear to have been removed
such that the next limiting factor is diagonalisation of the Fock matrix which scales as N*. A
method which solves the SCF equations in a way that only requires linear scaling CPU time
has recently been developed®’ and applied successfully to record breaking RHF/STO-3G
calculations with 2000 atoms and 6000 basis functions.”® This is well beyond the current
5000 by 5000 limit (for serial calculations) with standard methods due to current memory
contraints. Thus it would appear that for the HF level of theory quantum chemistry has
finally found it’s “Holy Grail”, linear scaling with system size. The next stage is to go
beyond the HF level of theory to develop linear scaling methods for the HF/DFT level which

is very good at modelling biological type systems.

39



10.1 Parallelising of Calculations
The next major hurdle to be overcome in linear scaling SCF theory, before it can realise its

full potential, is the conversion to code that can be executed in parallel.

All the examples given in this report were calculated in serial on single processors.
Unfortunately the future of fast computing is likely to be in the form of larger and larger
distributed arrays of parallel processors using shared memory. Hence all the time the
implementations only work on single processors the size of system that can be studied is

severely limited.

Greengard discussed the problem of parallel implementation of his original FMM method

as follows™:-

“...because all fast methods rely on rearranging a computation to
reduce the operation count, efficient parallel implementation is a
daunting problem. That’s because transporting the data fast enough

that processors are not left idle can be very difficult”

Therefore most research is currently being directed towards efficient parallel
implementations of linear scaling SCF theories. Work currently being conducted by
Challacombe ef al. on parallel implementations of the above methods is showing
promising results. Speeds of up to 4x10° floating point operations per second are being
achieved for the minimisation step on 32 nodes of an SGI origin 2000 array. Papers on this

field should be forthcoming in the near future.®

When this problem is overcome, with the rise in computing power making fast methods
more and more economical over direct methods, the use of multipole expansions in
electronic structure calculations is likely to prove to be a very important development

making possible the accurate study of systems of previously unprecedented size.
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